Mappings conjugate to multivalued mappings of topological spaces, and their application to dynamical games
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 323-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Associated with multivalued mappings of a topological space $X$ into a topological space $Y$ are conjugate mappings of the set of upper (lower) semicontinuous real functions on $Y$ into the set of real functions on $X$. It is shown that to compactvalued upper semicontinuous mappings of $X$ into $Y$ there correspond mappings of the set of upper (lower) semicontinuous real functions on $Y$ into the set of upper (lower) semicontinuous real functions on $X$. The properties of the conjugate mappings are studied, and their applications to dynamical games are considered. Bibliography: 7 titles.
@article{SM_1990_65_2_a2,
     author = {V. A. Baidosov},
     title = {Mappings conjugate to multivalued mappings of topological spaces, and their application to dynamical games},
     journal = {Sbornik. Mathematics},
     pages = {323--331},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a2/}
}
TY  - JOUR
AU  - V. A. Baidosov
TI  - Mappings conjugate to multivalued mappings of topological spaces, and their application to dynamical games
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 323
EP  - 331
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a2/
LA  - en
ID  - SM_1990_65_2_a2
ER  - 
%0 Journal Article
%A V. A. Baidosov
%T Mappings conjugate to multivalued mappings of topological spaces, and their application to dynamical games
%J Sbornik. Mathematics
%D 1990
%P 323-331
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a2/
%G en
%F SM_1990_65_2_a2
V. A. Baidosov. Mappings conjugate to multivalued mappings of topological spaces, and their application to dynamical games. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 323-331. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a2/

[1] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR

[2] Burbaki N., Obschaya topologiya. Chisla i svyazannye s nimi gruppy i prostranstva, Gos. izd-vo fiz.-matem. lit., M., 1959 | MR

[3] Borisovich Yu. G., Gelman V. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 19, VINITI, M., 1982, 127–230 | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[5] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1988 | MR | Zbl

[6] Roxin E., “Stability in control systems”, J. Different. Equat., 1:2 (1965), 115–150 | DOI | MR | Zbl

[7] Baidosov V. A., “O podkhode k opredeleniyu dinamicheskikh igr na yazyke obobschennykh dinamicheskikh sistem”, Optimalnoe upravlenie sistemami s neopredelennoi informatsiei, UNTs AN SSSR, Sverdlovsk, 1980, 3–11 | MR