Nonisolated Saito singularities
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 561-574

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that Saito divisors are characterized by the property that their singularities form a Cohen–Macaulay space. It is shown that this property is enjoyed by the discriminant of a miniversal deformation of a complete intersection with an isolated singularity. This gives a new proof of the fact that such a discriminant is a free divisor. As one example, generators are explicitly computed for the module of vector fields tangent to the discriminant of a miniversal deformation of the simple one-dimensional Giusti singularity $S_5$ – an intersection of two quadrics in three-space. It is also explained how the theory of local duality for isolated singularities can be carried over to the case of nonisolated Saito singularities. Bibliography: 37 titles.
@article{SM_1990_65_2_a13,
     author = {A. G. Aleksandrov},
     title = {Nonisolated {Saito} singularities},
     journal = {Sbornik. Mathematics},
     pages = {561--574},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - Nonisolated Saito singularities
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 561
EP  - 574
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/
LA  - en
ID  - SM_1990_65_2_a13
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T Nonisolated Saito singularities
%J Sbornik. Mathematics
%D 1990
%P 561-574
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/
%G en
%F SM_1990_65_2_a13
A. G. Aleksandrov. Nonisolated Saito singularities. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 561-574. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/