Nonisolated Saito singularities
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 561-574 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that Saito divisors are characterized by the property that their singularities form a Cohen–Macaulay space. It is shown that this property is enjoyed by the discriminant of a miniversal deformation of a complete intersection with an isolated singularity. This gives a new proof of the fact that such a discriminant is a free divisor. As one example, generators are explicitly computed for the module of vector fields tangent to the discriminant of a miniversal deformation of the simple one-dimensional Giusti singularity $S_5$ – an intersection of two quadrics in three-space. It is also explained how the theory of local duality for isolated singularities can be carried over to the case of nonisolated Saito singularities. Bibliography: 37 titles.
@article{SM_1990_65_2_a13,
     author = {A. G. Aleksandrov},
     title = {Nonisolated {Saito} singularities},
     journal = {Sbornik. Mathematics},
     pages = {561--574},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - Nonisolated Saito singularities
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 561
EP  - 574
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/
LA  - en
ID  - SM_1990_65_2_a13
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T Nonisolated Saito singularities
%J Sbornik. Mathematics
%D 1990
%P 561-574
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/
%G en
%F SM_1990_65_2_a13
A. G. Aleksandrov. Nonisolated Saito singularities. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 561-574. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a13/

[1] Abhyankar S. S., Local analytic geometry, New York, Academic Press., 1964 | MR | Zbl

[2] Aleksandrov A. G., “O deformatsiyakh odnomernykh osobennostei s invariantami $c=\delta +1$”, UMN, 33:3 (1978), 157–158 | MR | Zbl

[3] Aleksandrov A. G., “Normalnye formy odnomernykh kvaziodnorodnykh polnykh peresechenii”, Matem. sb., 117(159) (1982), 3–31 | MR | Zbl

[4] Aleksandrov A. G., “Chisla Milnora neizolirovannykh osobennostei Saito”, Funktsion. analiz i ego pril., 21:1 (1987), 1–10 | MR | Zbl

[5] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[6] Blass J., Blass P., “Computations of the conductor of algebraic surface $Z^{a}= X^{b}$, $Y^{c}$”, Revue Romaine de math. pure and appliquées, 27:7 (1982), 721–730 | MR | Zbl

[7] Buchsbaum D. A., Rim D. S., “A generalized Koszul complex II. Depth and multiplicity”, Trans. Amer. Math. Soc., 111:2 (1964), 197–224 | DOI | MR | Zbl

[8] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[9] Skoda H., Briancon J., “Sur la clôture intégrate d'un idéal de germes de fonctions holomorphes en un point de $C^{n}$”, C. r. Acad. Scient. Paris, 278 (1975), A-949–A-951 | MR

[10] Draper R., Fischer K., “Derivations into the integral closure”, Trans. Amer. Math. Soc., 271:1 (1982), 283–298 | DOI | MR | Zbl

[11] Eagon J. A., Northcott D. G., “Ideal defined by matrices and certain complex associated with them”, Proc. Royal Soc. Ser. A, 269 (1962), 188–204 | DOI | MR | Zbl

[12] Elkik R., “Singularitiés rationnelles et deformations”, Invent. Math., 47:1 (1978), 139–147 | DOI | MR | Zbl

[13] Ferrand D., “Les modules projectifs de type fini sur an anneau de polinôms sur un corps sont libres”, Lect. Notes Math., 567 (1977), 202–221 | DOI | MR

[14] Giusti M., “Sur les singularitiés isolées d'intersections completes quasi–homogenes”, Ann. Inst. Fourier, 27:3 (1977), 163–192 | MR | Zbl

[15] Givental A. B., “Svorachivanie invariantov grupp, porozhdennykh otrazheniyami i svyazannye s prostymi osobennostyami funktsii”, Funktsion. analiz i ego pril., 14:2 (1980), 4–14 | MR | Zbl

[16] Hochster M., Eagon J. A., “Cohen–Macaulay rings, invariant Theory, and generic perfection of determinantal loci”, Amer. J. Math., 93:4 (1971), 1020–1058 | DOI | MR | Zbl

[17] Hochster M., “The Zariski–Lipman conjecture in the graded case”, J. Algebra, 47:2 (1977), 411–424 | DOI | MR | Zbl

[18] Kaplanski I., Commutative Rings, Chicago Press, Chicago, 1974

[19] Kunz E., “Holomorphe Differentialformen auf algebraischen Varitäten mit Singularitäten I”, Manuscr. Math., 15 (1975), 91–108 | DOI | MR | Zbl

[20] Kunz E., “Residuen von Differentialformen auf Cohen–Macaulay Varitäten”, Math. Zeitschrift, 152 (1977), 165–189 | DOI | MR | Zbl

[21] Lipman J., “Free derivation modules on algebraic varieties”, Amer. J. Math., 87:4 (1965), 874–898 | DOI | MR | Zbl

[22] Looijenga E., “Isolated Singular Points of the Complete Intersections.”, London Math. Soc., Lecture Notes Ser., no. 77, 1984 | MR

[23] Nobile A., “Some properties of the Nash blowing-up”, Pacific J. Math., 60:1 (1975), 297–305 | MR | Zbl

[24] Piene R., “Ideals associated to a desingularization”, Lect. Notes Math., 732 (1979), 503–517 | DOI | MR | Zbl

[25] Roberts J., “Hypersurfaces with nonsingular normalization and their double loci”, J. Algebra, 53:1 (1978), 253–267 | DOI | MR | Zbl

[26] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo. Sec. IA, 27:2 (1980), 265–291 | MR | Zbl

[27] Saito K., “Primitive forms for universal unfolding of a function with an isolated critical point”, J. Fac. Sci. Univ. Tokyo. Sec. IA, 28 (1982), 775–792 | MR

[28] Schaps M., “Deformations of Cohen–Macaulay schemes of codimension 2 and non–singular deformations of space curves”, Amer. J. Math., 99:4 (1977), 669–685 | DOI | MR | Zbl

[29] Siersma D., “Isolated line singularities”, Proc. Symp. Pure Math., 40:2 (1983), 485–496 | MR | Zbl

[30] Terao H., “Arrangements of hyperplanes and their freeness I”, J. Fac. Sci Univ. Tokyo. Sec. IA, 27:2 (1980), 293–312 | MR | Zbl

[31] Tessier B., The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Oslo-76), Sijthoff-Noordhoff Publ., Alphen aan den Rijn, 1977 | MR

[32] Wilson P. M. H., “On blowing up conductor ideals”, Math. Proc. Cambridge Phil. Soc., 83:3 (1978), 445–450 | DOI | MR | Zbl

[33] Zariski O., “Introduction to the theory of algebraic surfaces”, Lect. Notes Math., 1969, no. 83 | MR

[34] Zariski O., “Studies in equisingularity II”, Amer. J. Math., 87:4 (1965), 972–1006 | DOI | MR | Zbl

[35] Yano T., Sekiguchi J., “The microlocal structure of weighted homogeneous polynomials associated with Coxeter systems II”, Tokyo J. Math., 4:1 (1981), 1–34 | MR

[36] Aleksandrov A. G., “O komplekse de Rama neizolirovannykh osobennostei”, Funktsion. analiz i ego pril., 22:2 (1988), 59–60 | MR

[37] Kistlerov V. L., Printsipy postroeniya yazyka algebraicheskikh vychislenii FLAC, Preprint, IPU, M., 1987