Relative asymptotics for polynomials orthogonal on the real axis
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 505-529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a positive Borel measure $\rho$ on the real line $\mathbf R$ and a function $g$ on $\mathbf R$, the main purpose of the paper is to prove (under certain assumptions on $\rho$) relative asymptotic formulas of the type $$ \frac{h_n(gd\rho,z)}{h_n(d\rho,z)}\underset{n\to\infty}\rightrightarrows S(g,\Omega;z),\qquad z\in\Omega, $$ where $\Omega=\{z:\operatorname{Im}z>0\}$, $S(g,\Omega;z)$ is Szegö's function corresponding to $\Omega$ and the function $g$, $h_n(gd\rho,z)$ and $h_n(d\rho,z)$ are polynomials orthonormal relative to the measures $gd\rho$ and $d\rho$ respectively. Bibliography: 15 titles.
@article{SM_1990_65_2_a11,
     author = {G. L. Lopes},
     title = {Relative asymptotics for polynomials orthogonal on the real axis},
     journal = {Sbornik. Mathematics},
     pages = {505--529},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a11/}
}
TY  - JOUR
AU  - G. L. Lopes
TI  - Relative asymptotics for polynomials orthogonal on the real axis
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 505
EP  - 529
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a11/
LA  - en
ID  - SM_1990_65_2_a11
ER  - 
%0 Journal Article
%A G. L. Lopes
%T Relative asymptotics for polynomials orthogonal on the real axis
%J Sbornik. Mathematics
%D 1990
%P 505-529
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a11/
%G en
%F SM_1990_65_2_a11
G. L. Lopes. Relative asymptotics for polynomials orthogonal on the real axis. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 505-529. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a11/

[1] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97(139) (1975), 607–629 | Zbl

[2] Rakhmanov E. A., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Matem.sb., 103(145) (1977), 237–252 | Zbl

[3] Rakhmanov E. A., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov. II.”, Matem. sb., 118(160) (1982), 104–117 | MR | Zbl

[4] Rakhmanov E. A., “Ob asimptoticheskikh svoistvakh mnogochlenov, ortogonalnykh na okruzhnosti s vesami, ne udovletvoryayuschimi usloviyu Segë”, Matem. sb., 130(172) (1986), 151–169 | MR

[5] Mate A., Nevai P., Tolik V., “Extensions of Szegö's steory of orthogonal polynomials II”, Const. Approx., 3 (1987), 51–72 | DOI | MR | Zbl

[6] Mate A., Nevai P., Totik V., “Extensions of Szegö's theory of orthogonal polynomials III”, Const. Approx., 3 (1987), 73–96 | DOI | MR | Zbl

[7] Mate A., Nevai P., Totik V., “Strong and weak convergence of orthogonal polynomials”, Amer. J. Math., 1987, no. 109, 239–282 | DOI | MR

[8] Lopes G., “Skhodimost approksimatsii Pade meromorfnykh funktsii Stiltesovskogo tipa i sravnitelnaya asimptotika dlya ortogonalnykh mnogochlenov”, Matem. sb., 136(178):2(6) (1988), 206–226 | MR | Zbl

[9] Lopes G., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov i skhodimosti mnogotochechnykh approksimatsii Pade”, Matem. sb., 128(170) (1985), 216–229 | MR

[10] López G.,, “Asymptotics of polynomials orthogonal with respect to varying measures”, Const. Approx., 5:2 (1989) | MR

[11] López G., Rakhmanov E. A., “Rational approximation, orthogonal polynomials and equilibrium distributions”, Lect. Notes in Math., no. 1329, 1988, 125–157 | MR | Zbl

[12] Gonchar A. A., Lopes G., “O teoreme Markova dlya mnogotochechnykh approksimatsii Pade”, Matem. sb., 105(147) (1978), 512–524 | MR | Zbl

[13] Gonchar A. A., Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167) (1984), 117–127 | MR

[14] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i otrezke, Fizmatgiz, M., 1958 | Zbl

[15] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962