@article{SM_1990_65_2_a0,
author = {Yu. A. Aminov},
title = {Isometric immersions, with flat normal connection, of domains of $n$-dimensional {Lobachevsky} space into {Euclidean} spaces. {A~model} of a~gauge field},
journal = {Sbornik. Mathematics},
pages = {279--303},
year = {1990},
volume = {65},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/}
}
TY - JOUR AU - Yu. A. Aminov TI - Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field JO - Sbornik. Mathematics PY - 1990 SP - 279 EP - 303 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/ LA - en ID - SM_1990_65_2_a0 ER -
%0 Journal Article %A Yu. A. Aminov %T Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field %J Sbornik. Mathematics %D 1990 %P 279-303 %V 65 %N 2 %U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/ %G en %F SM_1990_65_2_a0
Yu. A. Aminov. Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 279-303. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/
[1] Moore J. D., “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–167 | MR
[2] Aminov Yu. A., “O pogruzhenii oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, DAN SSSR, 236 (1977), 521–524 | MR | Zbl
[3] Aminov Yu. A., “Preobrazovanie Bianki dlya oblasti mnogomernogo prostranstva Lobachevskogo”, Ukr. geometr. sb., 21 (1978), 3–5 | MR | Zbl
[4] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mednoe evklidovo prostranstvo”, Matem. sb., 111(153) (1980), 402–433 | MR | Zbl
[5] Aminov Yu. A., “Mnogomernyi analog uravneniya “sinus Gordona” i dvizhenie tverdogo tela”, DAN SSSR, 264:5 (1982), 1113–1116 | MR | Zbl
[6] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei trekhmernogo prostranstva Lobachevskogo v pyatimernoe evklidovo prostranstvo i dvizhenie tverdogo tela”, Matem. sb., 122(164) (1983), 12–30 | MR | Zbl
[7] Aminov Yu. A., “Svoistva grassmanova obraza lokalnogo pogruzheniya trekhmernogo prostranstva Lobachevskogo v pyatimernoe evklidovo prostranstvo”, Ukr. geometr. sb., 27 (1984), 3–11 | MR | Zbl
[8] Aminov Yu. A., “O pogruzheniyakh $n$-mernogo prostranstva Lobachevskogo v $2n$-mernoe evklidovo prostranstvo s $n$ polyami glavnykh napravlenii”, Ukr. geometr. sb., 28 (1985), 3–8
[9] Tenenblat K., Terng C. L., “A higher dimension generalisation of the sine-Gordon equation and its Bäcklund transformation”, Bull. Amer. Math. Soc. (New Ser.), 1:3 (1979), 589–593 | DOI | MR | Zbl
[10] Tenenblat K., Terng C. L., “Bäcklund's theorem for $n$-dimensional submanifolds of $\mathbf R^{2n-1}$”, Ann. Math., 111 (1980), 477–490 | DOI | MR | Zbl
[11] Terng C. L., “A higher dimension generalisation of the sine-Gordon equations and its soliton theory”, Ann. Math., 111 (1980), 491–510 | DOI | MR | Zbl
[12] Bianchi L., Lezioni di geometria differentziable, V. 2. Pt. 2, Bologna, 1924
[13] Bourlet M. C., “Sur les equations aux dérivés partielles simultanées qui contiennent plusieurs fonctions in connues”, Ann. l'Ecole Normaie Superieure. Ser. 3, 8 (1891), 3–63 | MR | Zbl
[14] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1962 | MR
[15] Prasad M. K., “Instantony i monopoli v teorii kalibrovochnykh polei Yanga–Millsa”, Geometricheskie idei v fizike, Mir, M., 1983, 64–96