Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 279-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One considers immersions of domains of the $n$-dimensional space $L^n$ into $E^{n+m}$, $m\geqslant n-1$, that have $n$ principal directions at each point. The system of Gauss–Codazzi–Ricci equations is reduced to a certain system of equations in functions $H_1,\dots,H_{m+1}$ which satisfy $\sum_{i=1}^{m+1}H_i^2=1$, where the first $n$ functions are the coefficients of the line element, $ds^2=\sum_{i=1}^nH_i^2du_i^2$, of $L^n$ in curvature coordinates. An analytic immersion, with flat normal connection, of $L^n$ in $E^{n+m}$ is arbitrary to the extent that it depends on $nm$ analytic functions of one variable. An “electromagnetic field” tensor $F_{\mu\nu}$ is introduced in a natural way and an “electric” vector field $\mathbf E$ and a “magnetic” vector field $\mathbf H$ with matrix components are associated with the immersion of $L^4$ in $E^7$. The tensor $F_{\mu\nu}$ satisfies an analogue of the Maxwell equations. It is proved that the density of the topological charge is zero. This means that the inner product $(\mathbf{EH}=0)$. The immersions with a stationary metric are considered the analogues of monopoles. The following theorem is proved. Theorem. For any immersion of a domain of $L^4$ into $E^7$ with stationary metric$,$ $\mathbf E\equiv0,$ there is one coordinate on which $\mathbf H$ does not depend, and this coordinate “compactifies”. The immersion of a domain of $L^4$ can be represented as the product of a certain three-dimensional submanifold $F^3\subset E^5$ and a circle $S^1\subset E^2$ of varying radius. It is proved that there exists no regular, class $C^2$, isometric immersion of the whole of $L^n$ into $E^{2n-1}$ with stationary metric. Another class of immersions of $L^4$ into $E^7$ is considered for which the $u_4$ family of coordinate lines of curvature are geodesics. In this case $\mathbf E$ is a potential field and the field $\mathbf H$ does not depend on $u_4$. The basic system of equations for the immersion can be reduced to a system of fewer dimensions. Certain immersions of domains of the Lobachevsky plane $L^2$ into $E^4$ are constructed that have zero Gauss torsion. Bibliography: 15 titles.
@article{SM_1990_65_2_a0,
     author = {Yu. A. Aminov},
     title = {Isometric immersions, with flat normal connection, of domains of $n$-dimensional {Lobachevsky} space into {Euclidean} spaces. {A~model} of a~gauge field},
     journal = {Sbornik. Mathematics},
     pages = {279--303},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 279
EP  - 303
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/
LA  - en
ID  - SM_1990_65_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field
%J Sbornik. Mathematics
%D 1990
%P 279-303
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/
%G en
%F SM_1990_65_2_a0
Yu. A. Aminov. Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 279-303. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a0/

[1] Moore J. D., “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–167 | MR

[2] Aminov Yu. A., “O pogruzhenii oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, DAN SSSR, 236 (1977), 521–524 | MR | Zbl

[3] Aminov Yu. A., “Preobrazovanie Bianki dlya oblasti mnogomernogo prostranstva Lobachevskogo”, Ukr. geometr. sb., 21 (1978), 3–5 | MR | Zbl

[4] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mednoe evklidovo prostranstvo”, Matem. sb., 111(153) (1980), 402–433 | MR | Zbl

[5] Aminov Yu. A., “Mnogomernyi analog uravneniya “sinus Gordona” i dvizhenie tverdogo tela”, DAN SSSR, 264:5 (1982), 1113–1116 | MR | Zbl

[6] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei trekhmernogo prostranstva Lobachevskogo v pyatimernoe evklidovo prostranstvo i dvizhenie tverdogo tela”, Matem. sb., 122(164) (1983), 12–30 | MR | Zbl

[7] Aminov Yu. A., “Svoistva grassmanova obraza lokalnogo pogruzheniya trekhmernogo prostranstva Lobachevskogo v pyatimernoe evklidovo prostranstvo”, Ukr. geometr. sb., 27 (1984), 3–11 | MR | Zbl

[8] Aminov Yu. A., “O pogruzheniyakh $n$-mernogo prostranstva Lobachevskogo v $2n$-mernoe evklidovo prostranstvo s $n$ polyami glavnykh napravlenii”, Ukr. geometr. sb., 28 (1985), 3–8

[9] Tenenblat K., Terng C. L., “A higher dimension generalisation of the sine-Gordon equation and its Bäcklund transformation”, Bull. Amer. Math. Soc. (New Ser.), 1:3 (1979), 589–593 | DOI | MR | Zbl

[10] Tenenblat K., Terng C. L., “Bäcklund's theorem for $n$-dimensional submanifolds of $\mathbf R^{2n-1}$”, Ann. Math., 111 (1980), 477–490 | DOI | MR | Zbl

[11] Terng C. L., “A higher dimension generalisation of the sine-Gordon equations and its soliton theory”, Ann. Math., 111 (1980), 491–510 | DOI | MR | Zbl

[12] Bianchi L., Lezioni di geometria differentziable, V. 2. Pt. 2, Bologna, 1924

[13] Bourlet M. C., “Sur les equations aux dérivés partielles simultanées qui contiennent plusieurs fonctions in connues”, Ann. l'Ecole Normaie Superieure. Ser. 3, 8 (1891), 3–63 | MR | Zbl

[14] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1962 | MR

[15] Prasad M. K., “Instantony i monopoli v teorii kalibrovochnykh polei Yanga–Millsa”, Geometricheskie idei v fizike, Mir, M., 1983, 64–96