On control of diffusion processes on a surface in Euclidean space
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 185-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Controlled diffusion processes that begin on some hypersurface and stay on it always are considered in Euclidean space. Such a situation includes controlled diffusion processes in the whole space. The results thus make sense for this case, and it turns out that even then they are stronger in many respects than previously known results. Another new element here is differentiation in the space of strategies, implemented by introducing auxiliary parameters. Bibliography: 6 titles.
@article{SM_1990_65_1_a9,
     author = {N. V. Krylov},
     title = {On control of diffusion processes on a surface in {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {185--203},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a9/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On control of diffusion processes on a surface in Euclidean space
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 185
EP  - 203
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a9/
LA  - en
ID  - SM_1990_65_1_a9
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On control of diffusion processes on a surface in Euclidean space
%J Sbornik. Mathematics
%D 1990
%P 185-203
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a9/
%G en
%F SM_1990_65_1_a9
N. V. Krylov. On control of diffusion processes on a surface in Euclidean space. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 185-203. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a9/

[1] Krylov N. V., “Ob otsenkakh momentov kvaziproizvodnykh reshenii stokhasticheskikh uravnenii po nachalnym dannym i ikh primenenii”, Matem. sb., 136(178) (1988), 510–529 | MR | Zbl

[2] Krylov N. V., “Ob upravlenii diffuzionnym protsessom do momenta pervogo vykhoda iz oblasti”, Izv. AN SSSR. Ser. matem., 45 (1981), 1029–1048 | MR | Zbl

[3] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR

[4] Lions P. L., Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. III – Regularity of the optimal cost function, Nonlinear PDE and applications, Collège de France Seminar. V. V, Pitman, London, 1984 | MR | Zbl

[5] Krylov N. V., “Ob upravlyaemykh diffuzionnykh protsessakh s neogranichennymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 45 (1981), 734–759 | MR | Zbl

[6] Krylov N. V., “Nekotorye novye rezultaty iz teorii upravlyaemykh diffuzionnykh protsessov”, Matem. sb., 109(151) (1979), 146–164 | MR | Zbl