On the derivative of an entire Dirichlet series
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 133-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a sequence $\Lambda=\lambda_n$ of nonnegative numbers increasing to $+\infty$ let $S(\Lambda)$ denote the class of Dirichlet series $F(s)=\sum_{n=0}^\infty a_n\exp(s\lambda_n)$, $s=\sigma+it$, absolutely convergent in $\mathbf C$. If $F\in S(\Lambda)$, then let $M(\sigma)=\sup\{|F(\sigma+it)|:t\in\mathbf R\}$, $L(\sigma)=M'(\sigma)/M(\sigma)$ and $\lambda_{\nu(\sigma)}$ the central exponent. It is shown that for the relation $L(\sigma)\sim\lambda_{\nu(\sigma)}$ to hold as $0\leqslant\sigma\to+\infty$ outside some set of finite measure for each function $F\in S(\Lambda)$ it is necessary and sufficient that $\sum^\infty_{n=0}\frac1{n\lambda_n}<\infty$. This condition can be weakened in the case when an additional restriction is placed on the decrease of the coefficients $a_n$. Bibliography: 10 titles.
@article{SM_1990_65_1_a7,
     author = {M. N. Sheremeta},
     title = {On the derivative of an entire {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {133--145},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - On the derivative of an entire Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 133
EP  - 145
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/
LA  - en
ID  - SM_1990_65_1_a7
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T On the derivative of an entire Dirichlet series
%J Sbornik. Mathematics
%D 1990
%P 133-145
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/
%G en
%F SM_1990_65_1_a7
M. N. Sheremeta. On the derivative of an entire Dirichlet series. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 133-145. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/

[1] Doetsch G., “Über die obere Grenze des absoluten Beitrages einer analytischen Funktion auf Geraden”, Math. Z., 8 (1920), 237–240 | DOI | MR | Zbl

[2] Strelits Sh. I., Asimptoticheskie svoistva analiticheskikh reshenii differentsialnykh uravnenii, Mintis, Vilnyus, 1972 | MR | Zbl

[3] Sheremeta M. N., “Analogi teoremy Vimana dlya ryadov Dirikhle”, Matem. sb., 110(152) (1979), 102–116 | MR | Zbl

[4] Skaskiv O. B., “O povedenii maksimalnogo chlena ryada Dirikhle, zadayuschego tseluyu funktsiyu”, Matem. zametki, 37:1 (1985), 41–47 | MR | Zbl

[5] Sheremeta M. N., “Metod Vimana–Valirona dlya ryadov Dirikhle”, Ukr. matem. zhurn., 30:4 (1978), 488–497 | MR | Zbl

[6] Sheremeta M. N., “Rost v polose tselykh funktsii, predstavlennykh ryadami Dirikhle”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 674–687 | MR | Zbl

[7] Skaskiv O. B., Sheremeta M. N., “Ob asimptoticheskom povedenii tselykh ryadov Dirikhle”, Matem. sb., 131(173) (1986), 385–402 | MR

[8] Sheremeta M. N., “Asimptoticheskie svoistva tselykh funktsii, zadannykh ryadami Dirikhle i ikh proizvodnykh”, Ukr. matem. zhurn., 31:6 (1979), 723–730 | MR | Zbl

[9] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[10] Hayman W. K., Stewart F. M., “Real inequalities with applications to function theory”, Proc. Camb. Phil. Soc., 50 (1954), 250–260 | DOI | MR | Zbl