On the derivative of an entire Dirichlet series
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 133-145

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence $\Lambda=\lambda_n$ of nonnegative numbers increasing to $+\infty$ let $S(\Lambda)$ denote the class of Dirichlet series $F(s)=\sum_{n=0}^\infty a_n\exp(s\lambda_n)$, $s=\sigma+it$, absolutely convergent in $\mathbf C$. If $F\in S(\Lambda)$, then let $M(\sigma)=\sup\{|F(\sigma+it)|:t\in\mathbf R\}$, $L(\sigma)=M'(\sigma)/M(\sigma)$ and $\lambda_{\nu(\sigma)}$ the central exponent. It is shown that for the relation $L(\sigma)\sim\lambda_{\nu(\sigma)}$ to hold as $0\leqslant\sigma\to+\infty$ outside some set of finite measure for each function $F\in S(\Lambda)$ it is necessary and sufficient that $\sum^\infty_{n=0}\frac1{n\lambda_n}\infty$. This condition can be weakened in the case when an additional restriction is placed on the decrease of the coefficients $a_n$. Bibliography: 10 titles.
@article{SM_1990_65_1_a7,
     author = {M. N. Sheremeta},
     title = {On the derivative of an entire {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - On the derivative of an entire Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 133
EP  - 145
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/
LA  - en
ID  - SM_1990_65_1_a7
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T On the derivative of an entire Dirichlet series
%J Sbornik. Mathematics
%D 1990
%P 133-145
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/
%G en
%F SM_1990_65_1_a7
M. N. Sheremeta. On the derivative of an entire Dirichlet series. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 133-145. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/