On the derivative of an entire Dirichlet series
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 133-145
Voir la notice de l'article provenant de la source Math-Net.Ru
For a sequence $\Lambda=\lambda_n$ of nonnegative numbers increasing to $+\infty$ let $S(\Lambda)$ denote the class of Dirichlet series $F(s)=\sum_{n=0}^\infty a_n\exp(s\lambda_n)$, $s=\sigma+it$, absolutely convergent in $\mathbf C$. If $F\in S(\Lambda)$, then let $M(\sigma)=\sup\{|F(\sigma+it)|:t\in\mathbf R\}$, $L(\sigma)=M'(\sigma)/M(\sigma)$ and $\lambda_{\nu(\sigma)}$ the central exponent. It is shown that for the relation $L(\sigma)\sim\lambda_{\nu(\sigma)}$ to hold as $0\leqslant\sigma\to+\infty$ outside some set of finite measure for each function $F\in S(\Lambda)$ it is necessary and sufficient that $\sum^\infty_{n=0}\frac1{n\lambda_n}\infty$. This condition can be weakened in the case when an additional restriction is placed on the decrease of the coefficients $a_n$.
Bibliography: 10 titles.
@article{SM_1990_65_1_a7,
author = {M. N. Sheremeta},
title = {On the derivative of an entire {Dirichlet} series},
journal = {Sbornik. Mathematics},
pages = {133--145},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/}
}
M. N. Sheremeta. On the derivative of an entire Dirichlet series. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 133-145. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a7/