On the set of sums of a conditionally convergent series of functions
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 119-131

Voir la notice de l'article provenant de la source Math-Net.Ru

This article concerns questions connected with the structure of the set of sums of series in a Banach space, i.e., the set of all limit functions for convergent rearrangements of a given series. It is proved that in any Banach space there exist series for which the set of sums consists of two points, series for which it forms a finite or infinite arithmetic progression, and series for which it is a finite-dimensional lattice. Stronger results are obtained separately for the spaces $L_p(0, 1)$ with $1\leqslant p\infty$ and for convergence in measure of series of functions. Bibliography: 5 titles.
@article{SM_1990_65_1_a6,
     author = {P. A. Kornilov},
     title = {On the set of sums of a conditionally convergent  series of functions},
     journal = {Sbornik. Mathematics},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/}
}
TY  - JOUR
AU  - P. A. Kornilov
TI  - On the set of sums of a conditionally convergent  series of functions
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 119
EP  - 131
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/
LA  - en
ID  - SM_1990_65_1_a6
ER  - 
%0 Journal Article
%A P. A. Kornilov
%T On the set of sums of a conditionally convergent  series of functions
%J Sbornik. Mathematics
%D 1990
%P 119-131
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/
%G en
%F SM_1990_65_1_a6
P. A. Kornilov. On the set of sums of a conditionally convergent  series of functions. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/