On the set of sums of a conditionally convergent series of functions
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 119-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article concerns questions connected with the structure of the set of sums of series in a Banach space, i.e., the set of all limit functions for convergent rearrangements of a given series. It is proved that in any Banach space there exist series for which the set of sums consists of two points, series for which it forms a finite or infinite arithmetic progression, and series for which it is a finite-dimensional lattice. Stronger results are obtained separately for the spaces $L_p(0, 1)$ with $1\leqslant p<\infty$ and for convergence in measure of series of functions. Bibliography: 5 titles.
@article{SM_1990_65_1_a6,
     author = {P. A. Kornilov},
     title = {On the set of sums of a conditionally convergent series of functions},
     journal = {Sbornik. Mathematics},
     pages = {119--131},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/}
}
TY  - JOUR
AU  - P. A. Kornilov
TI  - On the set of sums of a conditionally convergent series of functions
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 119
EP  - 131
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/
LA  - en
ID  - SM_1990_65_1_a6
ER  - 
%0 Journal Article
%A P. A. Kornilov
%T On the set of sums of a conditionally convergent series of functions
%J Sbornik. Mathematics
%D 1990
%P 119-131
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/
%G en
%F SM_1990_65_1_a6
P. A. Kornilov. On the set of sums of a conditionally convergent series of functions. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a6/

[1] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[2] Kadets M. I., “Ob uslovno skhodyaschikhsya ryadakh v $L_p(0,1)$”, UMN, 9:1 (1954), 107–109 | MR | Zbl

[3] Kornilov P. A., “O teoreme Rimana v funktsionalnykh prostranstvakh”, DAN SSSR, 271:6 (1983), 1310–1313 | MR

[4] Kadets V. M., “Ob odnoi zadache Banakha”, Funktsion. analiz i ego pril., 20:4 (1986), 74–75 | MR | Zbl

[5] Kornilov P. A., “O strukture mnozhestva summ funktsionalnogo ryada”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1988, no. 4, 9–12 | MR