Varieties of residually finite Lie algebras
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 109-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lie algebras over a finite field of characteristic $p>3$ are studied. It is proved that all algebras of a variety of Lie algebras are residually finite if and only if the variety is generated by a finite algebra all of whose nilpotent subalgebras are Abelian. Bibliography: 14 titles.
@article{SM_1990_65_1_a5,
     author = {A. A. Premet and K. N. Semenov},
     title = {Varieties of residually finite {Lie~algebras}},
     journal = {Sbornik. Mathematics},
     pages = {109--118},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a5/}
}
TY  - JOUR
AU  - A. A. Premet
AU  - K. N. Semenov
TI  - Varieties of residually finite Lie algebras
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 109
EP  - 118
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a5/
LA  - en
ID  - SM_1990_65_1_a5
ER  - 
%0 Journal Article
%A A. A. Premet
%A K. N. Semenov
%T Varieties of residually finite Lie algebras
%J Sbornik. Mathematics
%D 1990
%P 109-118
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a5/
%G en
%F SM_1990_65_1_a5
A. A. Premet; K. N. Semenov. Varieties of residually finite Lie algebras. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 109-118. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a5/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestvennye sootnosheniya v konechnykh koltsakh Li”, Matem. sb., 96(138) (1975), 543–559 | Zbl

[3] Bakhturin Yu. A., Olshanskii A. Yu., “Razreshimye pochti krossovy mnogoobraziya kolets Li”, Matem. sb., 100(142) (1976), 384–399 | Zbl

[4] Bakhturin Yu. A., Semenov K. N., “O finitnoi approksimiruemosti razreshimykh mnogoobrazii algebr Li”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1986, no. 6, 59–61 | MR | Zbl

[5] Dzhekobson N., Algebry Li, Mir, M., 1963

[6] Zelmanov E. I., “Absolyutnye deliteli nulya v iordanovykh parakh i algebrakh Li”, Matem. sb., 112(154) (1980), 611–628 | MR

[7] Kostrikin A. I., “O probleme Bernsaida”, Izv. AN SSSR. Ser. matem., 23 (1959), 3–34 | MR

[8] Olshanskii A. Yu., “Mnogoobraziya finitno approksimiruemykh grupp”, Izv. AN SSSR. Ser. matem., 33 (1969), 915–927

[9] Premet A. A., “Algebry Li bez silnogo vyrozhdeniya”, Matem. sb., 129(171) (1986), 140–153 | MR | Zbl

[10] Premet A. A., “Vnutrennie idealy v modulyarnykh algebrakh Li”, Vestsi AN BSSR. Ser. fiz-mat. navuk., 1986, no. 5, 11–15 | MR | Zbl

[11] Premet A. A., “Absolyutnye deliteli nulya v algebrakh Li nad sovershennym polem”, DAN BSSR, XXXI:10 (1987), 869–872 | MR

[12] Sheina G. V., “Mnogoobraziya metabelevykh $A$-algebr”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1977, no. 4, 37–46 | Zbl

[13] Benkart G. M., “On inner ideals and ad-nilpotent elements of Lie algebras”, Trans.Amer. Math. Soc., 232:1 (1977), 61–81 | DOI | MR | Zbl

[14] Seligman G. B., Modular Lie Algebras, Springer, Berlin, 1967 | MR | Zbl