The structure of the canonical module and the Gorenstein property for some quasihomogeneous varieties
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 81-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The canonical module for quasihomogeneous affine varieties with the property that the stabilizer of a point from the open orbit contains a maximal unipotent subgroup is described in terms of the structure of the semigroup of dominant weights defining the variety. A criterion for such a variety to be Gorenstein is also given. Bibliography: 18 titles.
@article{SM_1990_65_1_a3,
     author = {D. I. Panyushev},
     title = {The structure of the canonical module and the {Gorenstein} property for some quasihomogeneous varieties},
     journal = {Sbornik. Mathematics},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a3/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - The structure of the canonical module and the Gorenstein property for some quasihomogeneous varieties
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 81
EP  - 95
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a3/
LA  - en
ID  - SM_1990_65_1_a3
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T The structure of the canonical module and the Gorenstein property for some quasihomogeneous varieties
%J Sbornik. Mathematics
%D 1990
%P 81-95
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a3/
%G en
%F SM_1990_65_1_a3
D. I. Panyushev. The structure of the canonical module and the Gorenstein property for some quasihomogeneous varieties. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a3/