@article{SM_1990_65_1_a2,
author = {E. I. Volkova},
title = {Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator},
journal = {Sbornik. Mathematics},
pages = {67--79},
year = {1990},
volume = {65},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a2/}
}
TY - JOUR AU - E. I. Volkova TI - Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator JO - Sbornik. Mathematics PY - 1990 SP - 67 EP - 79 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a2/ LA - en ID - SM_1990_65_1_a2 ER -
E. I. Volkova. Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 67-79. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a2/
[1] Volkova E. I., “Asimptoticheskoe povedenie pri bolshikh znacheniyakh vremeni resheniya smeshannoi zadachi dlya odnogo klassa sistem differentsialnykh uravnenii v chastnykh proizvodnykh giperbolicheskogo tipa”, UMN, 39:4 (1984), 118
[2] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl
[3] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984
[4] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR
[5] Volkova E. I., “Nekotorye asimptoticheskie svoistva vetvyaschikhsya protsessov s dvizheniem chastits”, DAN SSSR, 279:2 (1984), 290–293 | MR | Zbl
[6] Volkova E. I., Vetvyaschiesya protsessy s bluzhdaniem chastits po otrezku, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1985
[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[8] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR
[9] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A. i dr., Integralnye upravneniya, Nauka, M., 1968
[10] Maister P. I., “Vetvyaschiesya diffuzionnye protsessy v neogranichennoi oblasti”, Matem. sb., 114(156) (1981), 406–424 | MR | Zbl