Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 67-79
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mixed problem is considered for a hyperbolic system of partial differential equations for whose solutions there exist integral representations having a probability-theoretical meaning. It is assumed that the right-hand sides of the system satisfy exponential estimates. Under natural restrictions on the coefficients, the asymptotics of the solutions as $t\to\infty$ are obtained with the help of the theory of linear integral operators with nonnegative kernels, and the theory of branching processes with several types of particles in motion along an interval. Bibliography: 10 titles.
@article{SM_1990_65_1_a2,
     author = {E. I. Volkova},
     title = {Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator},
     journal = {Sbornik. Mathematics},
     pages = {67--79},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a2/}
}
TY  - JOUR
AU  - E. I. Volkova
TI  - Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 67
EP  - 79
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a2/
LA  - en
ID  - SM_1990_65_1_a2
ER  - 
%0 Journal Article
%A E. I. Volkova
%T Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator
%J Sbornik. Mathematics
%D 1990
%P 67-79
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a2/
%G en
%F SM_1990_65_1_a2
E. I. Volkova. Asymptotics of the solution of a mixed problem for a system of differential equations connected with a positive integral operator. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 67-79. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a2/

[1] Volkova E. I., “Asimptoticheskoe povedenie pri bolshikh znacheniyakh vremeni resheniya smeshannoi zadachi dlya odnogo klassa sistem differentsialnykh uravnenii v chastnykh proizvodnykh giperbolicheskogo tipa”, UMN, 39:4 (1984), 118

[2] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[3] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[4] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR

[5] Volkova E. I., “Nekotorye asimptoticheskie svoistva vetvyaschikhsya protsessov s dvizheniem chastits”, DAN SSSR, 279:2 (1984), 290–293 | MR | Zbl

[6] Volkova E. I., Vetvyaschiesya protsessy s bluzhdaniem chastits po otrezku, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1985

[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[8] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[9] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A. i dr., Integralnye upravneniya, Nauka, M., 1968

[10] Maister P. I., “Vetvyaschiesya diffuzionnye protsessy v neogranichennoi oblasti”, Matem. sb., 114(156) (1981), 406–424 | MR | Zbl