The fundamental group of the complement of a~plane algebraic curve
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 267-277
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              $\pi_1(\mathbf C^2-K)$ is computed, where $K$ is an algebraic curve having only simple double points and satisfying certain restrictions at infinity. These restrictions are satisfied, for example, for a general curve parametrized by polynomials of given degrees, and also for a general curve with given Newton polyhedron. As a corollary, a new proof of the Fulton-Deligne theorem that $\pi_1(\mathbf CP^2-K)$ is abelian is obtained, if $K$ has only simple double points in $\mathbf CP^2$.
Figures: 1.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1990_65_1_a13,
     author = {S. Yu. Orevkov},
     title = {The fundamental group of the complement of a~plane algebraic curve},
     journal = {Sbornik. Mathematics},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a13/}
}
                      
                      
                    S. Yu. Orevkov. The fundamental group of the complement of a~plane algebraic curve. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 267-277. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a13/
