The fundamental group of the complement of a plane algebraic curve
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 267-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

$\pi_1(\mathbf C^2-K)$ is computed, where $K$ is an algebraic curve having only simple double points and satisfying certain restrictions at infinity. These restrictions are satisfied, for example, for a general curve parametrized by polynomials of given degrees, and also for a general curve with given Newton polyhedron. As a corollary, a new proof of the Fulton-Deligne theorem that $\pi_1(\mathbf CP^2-K)$ is abelian is obtained, if $K$ has only simple double points in $\mathbf CP^2$. Figures: 1. Bibliography: 7 titles.
@article{SM_1990_65_1_a13,
     author = {S. Yu. Orevkov},
     title = {The fundamental group of the complement of a~plane algebraic curve},
     journal = {Sbornik. Mathematics},
     pages = {267--277},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a13/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - The fundamental group of the complement of a plane algebraic curve
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 267
EP  - 277
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a13/
LA  - en
ID  - SM_1990_65_1_a13
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T The fundamental group of the complement of a plane algebraic curve
%J Sbornik. Mathematics
%D 1990
%P 267-277
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a13/
%G en
%F SM_1990_65_1_a13
S. Yu. Orevkov. The fundamental group of the complement of a plane algebraic curve. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 267-277. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a13/

[1] Zariski O., Collected Papers. V. 3., Topology of curves and surfaces and special topics in the theory of algebraic varieties, MIT Press, Cambridge, Mass., 1978 | MR | Zbl

[2] Fulton W., “On a fundamental group of the complement of a node curve”, Ann. Math. Ser. 2, 111:2 (1980), 407–409 | DOI | MR | Zbl

[3] Delign P., “Le group fondamental du complement d'une courbe plane n'ayant que des points doubles ordinaires est abelien (d'apres W. Fulton)”, Seminair Bourbaki (1979/80. P. 1–10), Lect. Notes in Math., 842, 1981 | MR | Zbl

[4] Libgober A., “Alexander invariants of plane algebraic curves. Singularities. Pt. 2”, Proc. Symp. Pure Math. (Areata, Calif., 1981), 40, AMS, Providence, 1983 | MR

[5] Rudolph L., “Algebraic functions and closed braids”, Topology, 22:2 (1983), 191–202 | DOI | MR | Zbl

[6] Bass H., Connell E. H., Wright D., “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc., 7:2 (1982), 287–330 | DOI | MR | Zbl

[7] Orevkov S. Yu., “O trekhlistnykh polinomialnykh otobrazheniyakh $\mathbf C^2$”, Izv. AN SSSR. Ser. matem., 50 (1986), 1231–1240 | MR | Zbl