An inverse problem for a selfadjoint differential operator on the line
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 249-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem is considered for a high-order differential operator on the line. The inverse problem is formulated in terms of the Riemann problem. The data of the inverse problem arise as coefficients of the junction matrix of the Riemann problem. Under specific relations on the data of the inverse problem, which correspond to the self-adjointness of the original operator, the solvability of the Riemann problem is proved. The solution of the Riemann problem yields the solution of the inverse problem, as established in the paper. Bibliography: 11 titles.
@article{SM_1990_65_1_a12,
     author = {V. V. Sukhanov},
     title = {An inverse problem for a~selfadjoint differential operator on the line},
     journal = {Sbornik. Mathematics},
     pages = {249--266},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a12/}
}
TY  - JOUR
AU  - V. V. Sukhanov
TI  - An inverse problem for a selfadjoint differential operator on the line
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 249
EP  - 266
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a12/
LA  - en
ID  - SM_1990_65_1_a12
ER  - 
%0 Journal Article
%A V. V. Sukhanov
%T An inverse problem for a selfadjoint differential operator on the line
%J Sbornik. Mathematics
%D 1990
%P 249-266
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a12/
%G en
%F SM_1990_65_1_a12
V. V. Sukhanov. An inverse problem for a selfadjoint differential operator on the line. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 249-266. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a12/

[1] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4 (1959), 57–119 | MR

[2] Mikhailov A. V., “The problem o reduction and inverse scattering method”, Physica., 30 (1981), 73–117

[3] Beals R., “The inverse problem for ordinary differential operators on the line”, Amer. J. Math., 107:2 (1985), 281–366 | DOI | MR | Zbl

[4] Sukhanov V. V., “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya sistemy tipa KdF s bystroubyvayuschimi bessolitonnymi nachalnymi dannymi pri bolshikh vremenakh”, Probl. matem. fiziki, 12 (1987), 236–255 | MR

[5] Deift P., Tomei C, Trubowitz E., “Inverse scattering and the Boussinesq equation”, Comm. Pure and Appl. Math., 35:5 (1982), 567–629 | DOI | MR

[6] Khachatryan I. G., “Neobkhodimye i dostatochnye usloviya razreshimosti obratnoi zadachi rasseyaniya dlya differentsialnykh operatorov vysshikh poryadkov na poluosi”, Dokl. AN Arm. SSR, 77:2 (1983), 55–58 | MR | Zbl

[7] Krein M. G., Gokhberg I. Ts., “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:2 (1958), 3–72 | MR | Zbl

[8] Zverovich L. F., “Zadacha Rimana dlya neskolkikh neizvestnykh funktsii v sluchae slozhnogo kontura”, Teoriya fvnktsii kompleksnogo peremennogo i kraevye zadachi, 2, Cheboksary, 1974, 21–39

[9] Its A. R., Sukhanov V. V., “Matrichnaya zadacha Rimana na sisteme luchei i obratnye zadachi teorii rasseyaniya”, DAN, 283:3 (1985), 534–538 | MR | Zbl

[10] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970 | MR | Zbl

[11] Novokshenov V. Yu., “Asimptotika pri $t\to\infty$ resheniya zadachi Koshi dlya dvumepnogo obobscheniya tsepochki Tody”, Izv. AN SSSR. Ser. matem., 1984, no. 2, 372–410 | MR