Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 229-247

Voir la notice de l'article provenant de la source Math-Net.Ru

The operators considered here are symmetric in $L_2$ with the weight $|x|^{2\sigma}$ and correspond to Dirichlet problems for formally selfadjoint elliptic (in the Petrovskii sense) systems of differential equations of order $2m$ in a bounded domain $\Omega\subset\mathbf R^n$, $O\in\Omega$. All selfadjoint extensions of the operators are listed for every $\sigma\geqslant-m$ with exception of a countable set of half-integer exponents. It is shown that with increasing $\sigma$ the asymptotic conditions at $O$ corresponding to these extensions include all the higher derivatives of the fundamental solution. Analogous assertions concerning the case $O\in\partial\Omega$ are given. Bibliography: 20 titles.
@article{SM_1990_65_1_a11,
     author = {S. A. Nazarov},
     title = {Selfadjoint extensions of the {Dirichlet} problem operator in weighted function spaces},
     journal = {Sbornik. Mathematics},
     pages = {229--247},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 229
EP  - 247
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/
LA  - en
ID  - SM_1990_65_1_a11
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces
%J Sbornik. Mathematics
%D 1990
%P 229-247
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/
%G en
%F SM_1990_65_1_a11
S. A. Nazarov. Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 229-247. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/