Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 229-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The operators considered here are symmetric in $L_2$ with the weight $|x|^{2\sigma}$ and correspond to Dirichlet problems for formally selfadjoint elliptic (in the Petrovskii sense) systems of differential equations of order $2m$ in a bounded domain $\Omega\subset\mathbf R^n$, $O\in\Omega$. All selfadjoint extensions of the operators are listed for every $\sigma\geqslant-m$ with exception of a countable set of half-integer exponents. It is shown that with increasing $\sigma$ the asymptotic conditions at $O$ corresponding to these extensions include all the higher derivatives of the fundamental solution. Analogous assertions concerning the case $O\in\partial\Omega$ are given. Bibliography: 20 titles.
@article{SM_1990_65_1_a11,
     author = {S. A. Nazarov},
     title = {Selfadjoint extensions of the {Dirichlet} problem operator in weighted function spaces},
     journal = {Sbornik. Mathematics},
     pages = {229--247},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 229
EP  - 247
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/
LA  - en
ID  - SM_1990_65_1_a11
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces
%J Sbornik. Mathematics
%D 1990
%P 229-247
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/
%G en
%F SM_1990_65_1_a11
S. A. Nazarov. Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 229-247. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/

[1] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s schelyu. 2. Oblast s malym otverstiem”, Matem. sb., 103(145) (1977), 265–284

[2] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, Izd-vo TGU, Tbilisi, 1981 | MR

[3] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[4] Berezin F. A., Faddeev L. D., “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[5] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo LGU, L., 1975

[6] Karpeshina Yu. E., Pavlov B. S., “Vzaimodeistvie nulevogo radiusa dlya bigarmonicheskogo i poligarmonicheskogo uravneniya”, Matem. zametki, 40:1 (1986), 49–59 | MR | Zbl

[7] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16 (1967), 209–292

[8] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya., Mir, M., 1971 | Zbl

[10] Agmon S. Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equation satisfying general boundary conditions”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[11] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[12] Ion F., Ploskie volny i sfericheskie srednie, IL, M., 1958

[13] Solonnikov V. A., “O matritsakh Grina dlya ellipticheskikh kraevykh zadach. I, II”, Tr. MIAN, PO (1970), 107–145 ; Тр. МИАН, 116 (1971), 181–216 | MR | Zbl | MR | Zbl

[14] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[15] Pazy A., “Asimptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rat. Mech. Analysis, 24:3 (1967), 193–218 | DOI | MR | Zbl

[16] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 2, Vischa shkola, Kharkov, 1978

[17] Mazya V. G., Nazarov S. A., “Asimptotika integralov energii pri malykh vozmuscheniyakh granitsy vblizi uglovykh i konicheskikh tochek”, Tr. MMO, 50 (1987), 79–129

[18] Birman M. Sh., Skvortsov G. E., “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izv. vuzov. Matematika, 1962, no. 5, 12–21 | MR | Zbl

[19] Karpeshina Yu. E., “Model treschiny v plastine”, Problemy matematicheskogo analiza, 10, Izd-vo LGU, L., 1986, 139–153 | MR

[20] Birman M. Sh., Solomyak M. Z., “Operator Maksvella v oblastyakh s negladkoi granitsei”, Sib. matem. zhurn., 28:1 (1987), 23–36 | MR | Zbl