Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 229-247
Voir la notice de l'article provenant de la source Math-Net.Ru
The operators considered here are symmetric in $L_2$ with the weight $|x|^{2\sigma}$ and correspond to Dirichlet problems for formally selfadjoint elliptic (in the Petrovskii sense) systems of differential equations of order $2m$ in a bounded domain $\Omega\subset\mathbf R^n$, $O\in\Omega$. All selfadjoint extensions of the operators are listed for every $\sigma\geqslant-m$ with exception of a countable set of half-integer exponents. It is shown that with increasing $\sigma$ the asymptotic conditions at $O$ corresponding to these extensions include all the higher derivatives of the fundamental solution. Analogous assertions concerning the case $O\in\partial\Omega$ are given.
Bibliography: 20 titles.
@article{SM_1990_65_1_a11,
author = {S. A. Nazarov},
title = {Selfadjoint extensions of the {Dirichlet} problem operator in weighted function spaces},
journal = {Sbornik. Mathematics},
pages = {229--247},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/}
}
S. A. Nazarov. Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 229-247. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a11/