Asymptotics of the spectrum of compact pseudodifferential operators in a Euclidean domain
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 205-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectrum of selfadjoint compact pseudodifferential operators in a bounded Euclidean domain is studied. The symbol of the CDO is assumed to be a smooth matrix function. No assumptions concerning ellipticity or constant multiplicity of the eigenvalues of the matrix symbol are made. For such CDO the asymptotics of the positive and negative spectrum including remainder term estimates are obtained by the variational method. The case of an operator with “constant” symbol is singled out. Bibliography: 11 titles.
@article{SM_1990_65_1_a10,
     author = {A. S. Andreev},
     title = {Asymptotics of the spectrum of compact pseudodifferential operators in a {Euclidean} domain},
     journal = {Sbornik. Mathematics},
     pages = {205--228},
     year = {1990},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a10/}
}
TY  - JOUR
AU  - A. S. Andreev
TI  - Asymptotics of the spectrum of compact pseudodifferential operators in a Euclidean domain
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 205
EP  - 228
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a10/
LA  - en
ID  - SM_1990_65_1_a10
ER  - 
%0 Journal Article
%A A. S. Andreev
%T Asymptotics of the spectrum of compact pseudodifferential operators in a Euclidean domain
%J Sbornik. Mathematics
%D 1990
%P 205-228
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a10/
%G en
%F SM_1990_65_1_a10
A. S. Andreev. Asymptotics of the spectrum of compact pseudodifferential operators in a Euclidean domain. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 205-228. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a10/

[1] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR. Ser. matem., 34 (1970), 1142–1158 | MR | Zbl

[2] Levendorskii S. Z., “Metod priblizhennogo spektralnogo proektora”, Izv. AN SSSR. Ser. matem., 49 (1985), 1177–1227 | MR

[3] Andreev A. S., “Otsenka ostatka v asimptotike spektra psevdodifferentsialnykh operatorov otritsatelnogo poryadka”, Funktsion. analiz, 20:2 (1986), 50–51 | MR | Zbl

[4] Widom H., “Asymptotic behaviour of eigenvalues of certain integral equations”, Trans. Amer. Math. Soc., 109:2 (1963), 278–295 | DOI | MR | Zbl

[5] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami”, Vestn. LGU, 1977, no. 13, 13–21 ; 1979, no. 13, 5–10 | MR | Zbl | MR | Zbl

[6] Andreev A. S., “Spektralnaya asimptotika kompaktnykh psevdodifferentsialnykh operatorov s postoyannym simvolom”, 3ap. nauchn. semin. LOMI AN SSSR, 138 (1984), 3–7 | MR

[7] Dauge M., Robert D., Formula de Weyl pour une classe d'operators pseudodifferential d'ordre negatif, Preprint. Univ. Nantes. Depart. Mathematiques, 1985 | Zbl

[8] Trev F., Vvedenie v teoriyu psevdodifferentsialnykh operatorov i integralnykh operatorov Fure, T. 1, Mir, M., 1984 | Zbl

[9] Birman M. Sh., Solomyak M. Z., “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Kh matem. shkola, Naukova dumka, Kiev, 1974, 5–189 | MR

[10] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR

[11] Tulovskii V. N., “Raspredelenie sobstvennykh chisel dlya differentsialnykh operatorov s postoyannymi koeffitsientami”, Funktsion. analiz, 5:3 (1971), 85–100 | MR