On the Dirichlet problem for a second-order elliptic equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 19-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The function space $C_{n-1}(\overline Q)$, $C(\overline Q)\subset C_{n-1}(\overline Q)\subset L_2(Q)$, where $Q$ is a bounded domain in $\mathbf R_n$, consists of elements that on sets of positive $(n-1)$-dimensional Hausdorff measure have traces with a property analogous to joint continuity. For $\partial Q\in C^1$ the set of traces of the functions in $C_{n-1}(\overline Q)$ on $\partial Q$ coincides with $L_2(\partial Q)$, and the imbedding $W_2^1(Q)\subset C_{n-1}(\overline Q)$ is valid.
Solutions of the Dirichlet problem in $C_{n-1}(\overline Q)$ are considered for the elliptic equation 
$$
\sum_{i,j=1}^n(a_{ij}(x)u_{x_i})_{x_j}=f,\quad x\in Q;\qquad u|_{\partial Q}=u_0.
$$
Under the assumption that the normal to $\partial Q$ and the coefficients of the equation satisfy the Dini condition on $\partial Q$, it is established that for all $u_0\in L_2(\partial Q)$ and $f\in W_2^{-1}(Q)$ there is a unique solution that depends continuously on $u_0$ and $f$. It is proved that in this situation the solution in $C_{n-1}(\overline Q)$ coincides with the concept of a solution in $W^1_{2,\mathrm{loc}}$ introduced by Mikhailov.
Bibliography: 39 titles.
			
            
            
            
          
        
      @article{SM_1990_65_1_a1,
     author = {A. K. Gushchin},
     title = {On the {Dirichlet} problem for a second-order elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {19--66},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a1/}
}
                      
                      
                    A. K. Gushchin. On the Dirichlet problem for a second-order elliptic equation. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 19-66. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a1/
