Asymptotics of relaxation oscilations
Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete asymptotics of relaxation oscillations in $R^n$ is constructed. The process is divided into two steps: the construction of the asymptotics of the integral manifold of the system under consideration and the asymptotic integration of the equation in this manifold, with regular dependence on the small parameter. Together with the previously solved stability problem this completes the study of all the main questions connected with the asymptotics of a multidimensional relaxation cycle. Bibliography: 8 titles.
@article{SM_1990_65_1_a0,
     author = {A. Yu. Kolesov and E. F. Mishchenko},
     title = {Asymptotics of relaxation oscilations},
     journal = {Sbornik. Mathematics},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
TI  - Asymptotics of relaxation oscilations
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 1
EP  - 17
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_1_a0/
LA  - en
ID  - SM_1990_65_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%T Asymptotics of relaxation oscilations
%J Sbornik. Mathematics
%D 1990
%P 1-17
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_65_1_a0/
%G en
%F SM_1990_65_1_a0
A. Yu. Kolesov; E. F. Mishchenko. Asymptotics of relaxation oscilations. Sbornik. Mathematics, Tome 65 (1990) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SM_1990_65_1_a0/