On solvable subvarieties of the variety generated by the Witt algebra
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 415-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conjecture that the commutator subalgebra of any solvable algebra lying in the variety generated by the Lie algebra of vector fields on the line is nilpotent is disproved in the case when the ground field has zero characteristic. The algebra constructed turns out to be useful for describing all solvable subvarieties of the variety generated by the Lie algebra of vector fields on the line (it may be regarded as a Witt algebra). It is proved that any such subvariety either contains this algebra, or consists of algebras with nilpotent commutator subalgebras. An essential role in the proof is played by a result that is of independent interest: a solvable variety consists of algebras with nilpotent commutator subalgebras if and only if all its algebras with degree of nilpotency at most three have this property. Bibliography: 14 titles.
@article{SM_1989_64_2_a8,
     author = {S. P. Mishchenko},
     title = {On solvable subvarieties of the variety generated by the {Witt} algebra},
     journal = {Sbornik. Mathematics},
     pages = {415--426},
     year = {1989},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a8/}
}
TY  - JOUR
AU  - S. P. Mishchenko
TI  - On solvable subvarieties of the variety generated by the Witt algebra
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 415
EP  - 426
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a8/
LA  - en
ID  - SM_1989_64_2_a8
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%T On solvable subvarieties of the variety generated by the Witt algebra
%J Sbornik. Mathematics
%D 1989
%P 415-426
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a8/
%G en
%F SM_1989_64_2_a8
S. P. Mishchenko. On solvable subvarieties of the variety generated by the Witt algebra. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 415-426. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a8/

[1] Kirillov A. A., Kontsevich M. L., “Rost algebry Li, porozhdennoi dvumya obschimi vektornymi polyami na pryamoi”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1983, no. 4, 15–20 | MR | Zbl

[2] Kirillov A. A., Kontsevich M. L., Molev A. I., Algebry promezhutochnogo rosta, Preprint No 39, IPM im. M. V. Keldysha AN SSSR, M., 1983 | MR

[3] Kirillov A. A., Molev A. I., Ob algebraicheskoi strukture algebry Li vektornykh polei, Preprint No 168, IPM im. M. V. Keldysha AN SSSR, M., 1985 | MR

[4] Razmyslov Yu. P., “Tsentralnye polinomy v neprivodimykh predstavleniyakh poluprostoi algebry Li”, Matem. sb., 122(164) (1983), 97–125 | MR | Zbl

[5] Razmyslov Yu. P., “Prostye algebry Li, udovletvoryayuschie standartnomu lievu tozhdestvu stepeni 5”, Izv. AN SSSR. Ser. matem., 49 (1985), 592–634 | MR | Zbl

[6] Razmyslov Yu. P., “O konechnoi baziruemosti tozhdestv matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12:1 (1973), 82–113 | MR

[7] Mischenko S. P., “Mnogoobrazie algebr Li s dvustupenno-nilpotentnym kommutantom”, VestsI. BSSR. Ser. fIz.-mat. navuk, 1987, no. 6, 39–43 | Zbl

[8] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannym so standartnymi tozhdestvami II”, VestsI. AN BSSR. Ser. fIz.-mat. navuk, 1980, no. 2, 22–27 | MR | Zbl

[9] Mischenko S. P., “O razreshimykh mnogoobraziyakh algebr Li s pochti polinomialnym rostom”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1987, no. 4, 97

[10] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1984 | MR

[11] Mischenko S. P., “K probleme engelevosti”, Matem. sb., 124(166) (1984), 56–67 | Zbl

[12] Mischenko S. P., “O mnogoobraziyakh polinomialnogo rosta algebr Li nad polem kharakteristiki nul”, Matem. zametki, 40:6 (1986), 713–721 | MR

[13] Higgins P. J., “Lie rings satisfying the Engel condition”, Proc. Cambr. Phylos. Soc., 50:1 (1954), 8–15 | DOI | MR | Zbl

[14] Mischenko S. P., “Tozhdestvo engelevosti i ego prilozhenie”, Matem. sb., 121(163) (1983), 423–430 | Zbl