Asymptotics as $t\to0$ for solutions of the heat equation in a domain
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 383-395

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem is considered for a second-order parabolic equation in a domain with a conical point on the boundary. The right sides need not satisfy consistency conditions at the initial time. A complete asymptotic expansion as $t\to0$ is obtained; it is uniform with respect to the space variables. Bibliography: 6 titles.
@article{SM_1989_64_2_a6,
     author = {V. A. Kozlov},
     title = {Asymptotics as $t\to0$ for solutions of the heat equation in a domain},
     journal = {Sbornik. Mathematics},
     pages = {383--395},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a6/}
}
TY  - JOUR
AU  - V. A. Kozlov
TI  - Asymptotics as $t\to0$ for solutions of the heat equation in a domain
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 383
EP  - 395
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a6/
LA  - en
ID  - SM_1989_64_2_a6
ER  - 
%0 Journal Article
%A V. A. Kozlov
%T Asymptotics as $t\to0$ for solutions of the heat equation in a domain
%J Sbornik. Mathematics
%D 1989
%P 383-395
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a6/
%G en
%F SM_1989_64_2_a6
V. A. Kozlov. Asymptotics as $t\to0$ for solutions of the heat equation in a domain. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 383-395. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a6/