Rationality of moduli varieties of plane curves of degree $3k$
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 375-381
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the moduli varieties $\mathfrak A_d$ of plane curves of degree $d\equiv0\mod3$ are rational for sufficiently large $d$. (N. I. Shepherd-Barron has determined and partially realized a method for proving the rationality of the varieties $\mathfrak A_d$.) Bibliography: 3 titles.
@article{SM_1989_64_2_a5,
author = {P. I. Katsylo},
title = {Rationality of moduli varieties of plane curves of degree~$3k$},
journal = {Sbornik. Mathematics},
pages = {375--381},
year = {1989},
volume = {64},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a5/}
}
P. I. Katsylo. Rationality of moduli varieties of plane curves of degree $3k$. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 375-381. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a5/
[1] Bogomolov F. A., Katsylo P. I., “Ratsionalnost nekotorykh faktormnogoobrazii”, Matem. sb., 126(168) (1985), 548–589 | MR
[2] Formanek E., “The center of the ring of 3x3 generic matrices”, Lin. Mult. Alg. Math., 25 (1974), 299–325