Rationality of moduli varieties of plane curves of degree~$3k$
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 375-381

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the moduli varieties $\mathfrak A_d$ of plane curves of degree $d\equiv0\mod3$ are rational for sufficiently large $d$. (N. I. Shepherd-Barron has determined and partially realized a method for proving the rationality of the varieties $\mathfrak A_d$.) Bibliography: 3 titles.
@article{SM_1989_64_2_a5,
     author = {P. I. Katsylo},
     title = {Rationality of moduli varieties of plane curves of degree~$3k$},
     journal = {Sbornik. Mathematics},
     pages = {375--381},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a5/}
}
TY  - JOUR
AU  - P. I. Katsylo
TI  - Rationality of moduli varieties of plane curves of degree~$3k$
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 375
EP  - 381
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a5/
LA  - en
ID  - SM_1989_64_2_a5
ER  - 
%0 Journal Article
%A P. I. Katsylo
%T Rationality of moduli varieties of plane curves of degree~$3k$
%J Sbornik. Mathematics
%D 1989
%P 375-381
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a5/
%G en
%F SM_1989_64_2_a5
P. I. Katsylo. Rationality of moduli varieties of plane curves of degree~$3k$. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 375-381. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a5/