The fundamental theorem of Galois theory
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 359-374

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary categories $C$ and $X$ and an arbitrary functor $I\colon C\to X$ the author introduces the notion of an $I$-normal object and proves a general type of fundamental theorem of Galois theory for such objects. It is shown that the normal extensions of commutative rings and central extensions of multi-operator groups are special cases of $I$-normal objects. Bibliography: 14 titles.
@article{SM_1989_64_2_a4,
     author = {G. Z. Dzhanelidze},
     title = {The fundamental theorem of {Galois} theory},
     journal = {Sbornik. Mathematics},
     pages = {359--374},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a4/}
}
TY  - JOUR
AU  - G. Z. Dzhanelidze
TI  - The fundamental theorem of Galois theory
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 359
EP  - 374
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a4/
LA  - en
ID  - SM_1989_64_2_a4
ER  - 
%0 Journal Article
%A G. Z. Dzhanelidze
%T The fundamental theorem of Galois theory
%J Sbornik. Mathematics
%D 1989
%P 359-374
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a4/
%G en
%F SM_1989_64_2_a4
G. Z. Dzhanelidze. The fundamental theorem of Galois theory. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 359-374. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a4/