The fundamental theorem of Galois theory
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 359-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For arbitrary categories $C$ and $X$ and an arbitrary functor $I\colon C\to X$ the author introduces the notion of an $I$-normal object and proves a general type of fundamental theorem of Galois theory for such objects. It is shown that the normal extensions of commutative rings and central extensions of multi-operator groups are special cases of $I$-normal objects.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1989_64_2_a4,
     author = {G. Z. Dzhanelidze},
     title = {The fundamental theorem of {Galois} theory},
     journal = {Sbornik. Mathematics},
     pages = {359--374},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a4/}
}
                      
                      
                    G. Z. Dzhanelidze. The fundamental theorem of Galois theory. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 359-374. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a4/
