On the integrability of a conjugate function in $L^p$ with the polynomial weight
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 339-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any $p>1$ and any real $\alpha$, $-\infty<\alpha<\infty$, conditions on a function $f\in L_\alpha^p$ ($L_\alpha^p$ is the set of $2\pi$-periodic measurable functions $f$ such that $|f(x)|^p|x|^\alpha$ is integrable on $(-\pi,\pi]$) are found that are necessary and sufficient for its conjugate function $\widetilde f$ to be in $L_\alpha^p$. Bibliography: 16 titles.
@article{SM_1989_64_2_a3,
     author = {R. I. Gurielashvili},
     title = {On the integrability of a~conjugate function in $L^p$ with the polynomial weight},
     journal = {Sbornik. Mathematics},
     pages = {339--358},
     year = {1989},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/}
}
TY  - JOUR
AU  - R. I. Gurielashvili
TI  - On the integrability of a conjugate function in $L^p$ with the polynomial weight
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 339
EP  - 358
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/
LA  - en
ID  - SM_1989_64_2_a3
ER  - 
%0 Journal Article
%A R. I. Gurielashvili
%T On the integrability of a conjugate function in $L^p$ with the polynomial weight
%J Sbornik. Mathematics
%D 1989
%P 339-358
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/
%G en
%F SM_1989_64_2_a3
R. I. Gurielashvili. On the integrability of a conjugate function in $L^p$ with the polynomial weight. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 339-358. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/

[1] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965 | MR

[2] Hardy G. H., Littlewood J. E., “Some more theorems concerning Fourier series and Fourier power series”, Duke Math. J., 2 (1936), 354–382 | DOI | MR | Zbl

[3] Babenko K. I., “O sopryazhennykh funktsiyakh”, DAN SSSR, 62:2 (1948), 157–160 | MR | Zbl

[4] Chen K. K., “On the Cesaro summability of negative order for a Fourier series at a given point”, Amer. J. Math., 66:2 (1944), 299–312 | DOI | MR | Zbl

[5] Flett T. M., “Some theorems on odd and even functions”, Proc. London Math. Soc., 8:29 (1958), 135–148 | DOI | MR | Zbl

[6] Tsereteli O. D., “Metricheskaya kharakteristika mnozhestva funktsii, sopryazhennye funktsii kotorykh integriruemy”, Soobsch. AN GSSR, 81:2 (1976), 281–283 | MR | Zbl

[7] Tsereteli O. D., O sopryazhennykh funktsiyakh, Dis. $\dots$ dokt. fiz.-matem. nauk, Tbilisi, 1976

[8] Tsereteli O. D., “Ob odnom sluchae summiruemosti sopryazhennykh funktsii”, Tr. Tbilissk. matem. in-ta, 34 (1968), 155–159 | Zbl

[9] Tsereteli O. D., “Metricheskie svoistva sopryazhennykh funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 7, VINITI, M., 1975, 18–57

[10] Gurielashvili R. I., “O sopryazhennoi funktsii”, Soobsch. AN GSSR, 113:3 (1984), 473–476 | MR | Zbl

[11] Gurielashvili R. I., “O preobrazovanii Gilberta”, Soobsch. AN GSSR, 103:2 (1981), 273–276 | MR | Zbl

[12] Gurielashvili R. I., “On the Hilbert transform”, Anal. Math., 13 (1987), 1 | DOI | MR

[13] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948

[14] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[15] Tsereteli O. D., “Ob interpolirovanii operatorov metodom usecheniya”, Tr. Tbilissk. matem. in-ta, 36 (1969), 111–122

[16] Pitt H. R., “Theorems on Fourier series and power series”, Duke Math. J., 3:4 (1938), 747–755 | DOI | MR