On the integrability of a~conjugate function in $L^p$ with the polynomial weight
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 339-358

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $p>1$ and any real $\alpha$, $-\infty\alpha\infty$, conditions on a function $f\in L_\alpha^p$ ($L_\alpha^p$ is the set of $2\pi$-periodic measurable functions $f$ such that $|f(x)|^p|x|^\alpha$ is integrable on $(-\pi,\pi]$) are found that are necessary and sufficient for its conjugate function $\widetilde f$ to be in $L_\alpha^p$. Bibliography: 16 titles.
@article{SM_1989_64_2_a3,
     author = {R. I. Gurielashvili},
     title = {On the integrability of a~conjugate function in $L^p$ with the polynomial weight},
     journal = {Sbornik. Mathematics},
     pages = {339--358},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/}
}
TY  - JOUR
AU  - R. I. Gurielashvili
TI  - On the integrability of a~conjugate function in $L^p$ with the polynomial weight
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 339
EP  - 358
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/
LA  - en
ID  - SM_1989_64_2_a3
ER  - 
%0 Journal Article
%A R. I. Gurielashvili
%T On the integrability of a~conjugate function in $L^p$ with the polynomial weight
%J Sbornik. Mathematics
%D 1989
%P 339-358
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/
%G en
%F SM_1989_64_2_a3
R. I. Gurielashvili. On the integrability of a~conjugate function in $L^p$ with the polynomial weight. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 339-358. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a3/