Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 323-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article concerns algebras of $C^1$-functions in the disk $|z|<1$ such that $|\overline\partial f(z)|, where $w\uparrow$, and $\int_0\log\log w^{-1}(x)\,dx=+\infty$. For these functions a factorization theorem (on representation of each such function as the product of an analytic function and an antianalytic function, to within a function tending to zero as the boundary is approached) and a number of boundary uniqueness theorems are proved. One of these theorems is equivalent to a result generalizing the classical Levinson–Cartwright and Beurling theorems and consisting in the following. If $f(z)=\sum_{n<0}a_nz^n$, $|z|>1$, $|a_n|, $\sum_{n>0}p_n/n^2=\infty$, $F$ is analytic in the disk $|z|<1$, and $|F(z)|=o(w^{-1}(c(1-|z|)))$ as $|z|\to1$ for all $c<\infty$, where $w(x)=\exp(-\sup_n(p_n-nx))$, then $f=0$ and $F=0$ if $F$ has nontangential boundary values equal to the values of $f$ on some subset of the circle $|z|=1$ of positive Lebesgue measure. Here certain regularity conditions are imposed on $p$ and $w$. Uniqueness and factorization theorems for almost analytic functions are applied to the description of translation-invariant subspaces in the asymmetric algebras of sequences $$ \mathfrak A=\{\{a_n\};\forall\,c\enskip\exists\,c_1:|a_n|<c_1e^{-cp_n},\ n<0,\ \exists\,c,\,\exists\,c_1:|a_n|<c_1e^{cp_n},\ n\geqslant0\}. $$ Bibliography: 15 titles.
@article{SM_1989_64_2_a2,
     author = {A. A. Borichev},
     title = {Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences},
     journal = {Sbornik. Mathematics},
     pages = {323--338},
     year = {1989},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a2/}
}
TY  - JOUR
AU  - A. A. Borichev
TI  - Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 323
EP  - 338
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a2/
LA  - en
ID  - SM_1989_64_2_a2
ER  - 
%0 Journal Article
%A A. A. Borichev
%T Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences
%J Sbornik. Mathematics
%D 1989
%P 323-338
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a2/
%G en
%F SM_1989_64_2_a2
A. A. Borichev. Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 323-338. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a2/

[1] Levinson N., Gap and density theorems, AMS Coll. PubL, N.-Y., 1940 | MR | Zbl

[2] Beurling A., Quasianalyticity and general distributions (Stanford univ. Lect notes), 1961

[3] Dynkin E. M., “Funktsii s dannoi otsenkoi $\partial f/\partial\overline z$ i teorema Levinsona”, Matem. sb., 89(131):2(10) (1972), 182–190 | MR | Zbl

[4] Beurling A., “Analytic continuation across a linear boundary”, Acta Math., 128 (1972), 153–182 | DOI | MR | Zbl

[5] Brennan J. E., Functions with rapidly decreasing negative Fourier coefficients, Preprint, Univ. of Kentucky, Lexington, 1986 | MR

[6] Borichev A. A., Volberg A. L., Uniqueness theorems for almost analytical functions, Preprint LOMI. E-5-87, LOMI, Leningrad, 1987 | MR

[7] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950

[8] Volberg A. L., “Logarifm pochti analiticheskoi funktsii summiruem”, DAN SSSR, 265 (1982), 1297–1302 | MR

[9] Clancey K., Gohberg, Factorization of matrix functions and singular integral operators, Birkhäuser Verlag, Basel, 1981 | MR | Zbl

[10] Makarov N. G., “Invariantnye podprostranstva prostranstva”, Matem. sb., 119(161) (1982), 3–31

[11] Borichev A. A., “Svertochnye uravneniya v prostranstvakh posledovatelnostei s eksponentsialnym ogranicheniem rosta”, Zap. nauchn. sem. LOMI, 149 (1986), 107–115 | Zbl

[12] Nikolskii N. K., “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhniki. Matematicheskii analiz, 12, VINITI, M., 1974, 199–412

[13] Nikolskii N. K., “Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza”, Trudy MIAN, 120 (1974) | MR

[14] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1953

[15] Gaier D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR | Zbl