Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 323-338
Voir la notice de l'article provenant de la source Math-Net.Ru
This article concerns algebras of $C^1$-functions in the disk $|z|1$ such that $|\overline\partial f(z)|$, where $w\uparrow$, and $\int_0\log\log w^{-1}(x)\,dx=+\infty$. For these functions a factorization theorem (on representation of each such function as the product of an analytic function and an antianalytic function, to within a function tending to zero as the boundary is approached) and a number of boundary uniqueness theorems are proved. One of these theorems is equivalent to a result generalizing the classical Levinson–Cartwright and Beurling theorems and consisting in the following. If $f(z)=\sum_{n0}a_nz^n$, $|z|>1$, $|a_n|$, $\sum_{n>0}p_n/n^2=\infty$, $F$ is analytic in the disk $|z|1$, and $|F(z)|=o(w^{-1}(c(1-|z|)))$ as $|z|\to1$ for all $c\infty$, where $w(x)=\exp(-\sup_n(p_n-nx))$, then $f=0$ and $F=0$ if $F$ has nontangential boundary values equal to the values of $f$ on some subset of the circle $|z|=1$ of positive Lebesgue measure. Here certain regularity conditions are imposed on $p$ and $w$. Uniqueness and factorization theorems for almost analytic functions are applied to the description of translation-invariant subspaces in the asymmetric algebras of sequences
$$
\mathfrak A=\{\{a_n\};\forall\,c\enskip\exists\,c_1:|a_n|^{-cp_n},\ n0,\ \exists\,c,\,\exists\,c_1:|a_n|^{cp_n},\ n\geqslant0\}.
$$ Bibliography: 15 titles.
@article{SM_1989_64_2_a2,
author = {A. A. Borichev},
title = {Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences},
journal = {Sbornik. Mathematics},
pages = {323--338},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a2/}
}
TY - JOUR AU - A. A. Borichev TI - Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences JO - Sbornik. Mathematics PY - 1989 SP - 323 EP - 338 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a2/ LA - en ID - SM_1989_64_2_a2 ER -
A. A. Borichev. Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 323-338. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a2/