Convolutions of Hilbert modular forms and their non-Archimedean analogues
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 571-584
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author constructs non-Archimedean analytic functions which interpolate special values of the convolution of two Hilbert cusp forms on a product of complex upper half-planes.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1989_64_2_a18,
     author = {A. A. Panchishkin},
     title = {Convolutions of {Hilbert} modular forms and their {non-Archimedean} analogues},
     journal = {Sbornik. Mathematics},
     pages = {571--584},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a18/}
}
                      
                      
                    A. A. Panchishkin. Convolutions of Hilbert modular forms and their non-Archimedean analogues. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 571-584. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a18/
