Existence of a countable set of periodic solutions of the problem of forced oscillations for a weakly nonlinear wave equation
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 543-556 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the strip $0 of the plane of the points $t$, $x$ the following boundary value problem is considered: \begin{gather*} u_{tt}-u_{xx}=\pm|u|^{p-2}u+h(t,x)\quad(0<x<\pi),\qquad u(t,0)=u(t,\pi)=0, \\ u(t+2\pi,x)=u(t,x). \end{gather*} It is proved that for any $p>2$ and for an arbitrary $2\pi$-periodic function $h$ which is locally integrable with power $p(p-1)^{-1}$ this problem has a countable set of geometrically distinct generalized solutions. Bibliography: 15 titles.
@article{SM_1989_64_2_a16,
     author = {P. I. Plotnikov},
     title = {Existence of a~countable set of periodic solutions of the problem of forced oscillations for a~weakly nonlinear wave equation},
     journal = {Sbornik. Mathematics},
     pages = {543--556},
     year = {1989},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Existence of a countable set of periodic solutions of the problem of forced oscillations for a weakly nonlinear wave equation
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 543
EP  - 556
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/
LA  - en
ID  - SM_1989_64_2_a16
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Existence of a countable set of periodic solutions of the problem of forced oscillations for a weakly nonlinear wave equation
%J Sbornik. Mathematics
%D 1989
%P 543-556
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/
%G en
%F SM_1989_64_2_a16
P. I. Plotnikov. Existence of a countable set of periodic solutions of the problem of forced oscillations for a weakly nonlinear wave equation. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 543-556. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/

[1] Rabinowitz P., “Free vibrations for a semilinear wave equation”, Comm. pure Appl. Math., 31 (1978), 31–68 | DOI | MR | Zbl

[2] Brezis H., Coron J. M., Nirenberg L., “Free vebrations for a nonlinear wave equation and a theorem of P. Rabinowitz”, Comm. Pure Appl. Math., 33 (1980), 667–689 | DOI | MR

[3] Cesari L., “Existence in the large of periodic solutions of hyperbolic partial differential equations”, Arch. Rat. Mech. Anal., 20 (1965), 170–190 | DOI | MR | Zbl

[4] Rabinowitz P., “Periodic solutions of nonlinear hyperbolic partial differential equations”, Comm. Pure Appl. Math., 20 (1967), 145–205 | DOI | MR | Zbl

[5] Bahri A., Berestycki H., “Forced vibrations of superquadratic Hamiltonian systems”, Acta mathem., 152 (1984), 143–197 | DOI | MR | Zbl

[6] Pokhozhaev S. I., “Ob odnom podkhode k nelineinym uravneniyam”, DAN SSSR, 247 (1979), 1327–1331 | MR | Zbl

[7] Struwe M., “Infinitely many critical points for functionals, with are not even and applications to superlinear boundary value problems”, Manuscr. math., 32:3–4 (1980), 335–364 | DOI | MR | Zbl

[8] Bahri A., Berestycki H. A., “Perturbation method in critical point theory and applications”, Trans. Amer. Math. Soc., 267 (1981), 1–32 | DOI | MR | Zbl

[9] Zigmund A., Trigonometricheskie ryady, t. 2, Mir, M., 1965 | MR

[10] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[11] Zeifert G., Trelfall V., Variatsionnoe ischislenie v tselom, IL, M., 1947

[12] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[13] Krasnoselskii M. A., Topologicheskie metody i teorii nelineinykh integralnykh uravnenii, Gos. izd. tekh.-teor. lit., M., 1956 | MR

[14] Cwikel M., “Weak Type Estimates for singular values and the number of bound states of Schrödinger operators”, Annals Math., 106 (1977), 93–100 | DOI | MR | Zbl

[15] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1982