Existence of a~countable set of periodic solutions of the problem of forced oscillations for a~weakly nonlinear wave equation
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 543-556

Voir la notice de l'article provenant de la source Math-Net.Ru

In the strip $0$ of the plane of the points $t$, $x$ the following boundary value problem is considered: \begin{gather*} u_{tt}-u_{xx}=\pm|u|^{p-2}u+h(t,x)\quad(0\pi),\qquad u(t,0)=u(t,\pi)=0, \\ u(t+2\pi,x)=u(t,x). \end{gather*} It is proved that for any $p>2$ and for an arbitrary $2\pi$-periodic function $h$ which is locally integrable with power $p(p-1)^{-1}$ this problem has a countable set of geometrically distinct generalized solutions. Bibliography: 15 titles.
@article{SM_1989_64_2_a16,
     author = {P. I. Plotnikov},
     title = {Existence of a~countable set of periodic solutions of the problem of forced oscillations for a~weakly nonlinear wave equation},
     journal = {Sbornik. Mathematics},
     pages = {543--556},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Existence of a~countable set of periodic solutions of the problem of forced oscillations for a~weakly nonlinear wave equation
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 543
EP  - 556
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/
LA  - en
ID  - SM_1989_64_2_a16
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Existence of a~countable set of periodic solutions of the problem of forced oscillations for a~weakly nonlinear wave equation
%J Sbornik. Mathematics
%D 1989
%P 543-556
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/
%G en
%F SM_1989_64_2_a16
P. I. Plotnikov. Existence of a~countable set of periodic solutions of the problem of forced oscillations for a~weakly nonlinear wave equation. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 543-556. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a16/