Quasilinear parabolic equations containing a Volterra operator in the coefficients
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 527-542 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions are established for solvability in the large of the first initial-boundary value problem in a bounded domain $\Omega\subset R^n$ for the equation $$ u_t+(-1^m)\sum_{|\alpha|=m}D^\alpha\biggl[a_\alpha\biggl(\int_0^t|D^\alpha u|^q\,dt\biggr)|D^\alpha u|^{q-2}D^\alpha u\biggr]=f, $$ where $q\geqslant2$. It contains the integral of the unknown function in the coefficients. The problem is regarded as an evolution equation of the form $u'+Au=f$. Conditions of polynomial growth are imposed on the functions $a_\alpha(s)$: $$ a_0s^r\leqslant a_\alpha(s)\leqslant a_1s^r+a_2\qquad(a_i>0;\ r>0). $$ The space $\mathring W_p^m(\Omega;L^q(0,T))$, is constructed, where $p=q(1+r)$; the operator $A$ is coercive in this space. Under the additional assumption that the functions $a_\alpha(s)$ are convex (which corresponds to exponents $0) it is proved that $A$ is a monotone operator and the corresponding evolution equation is solvable. Bibliography: 6 titles.
@article{SM_1989_64_2_a15,
     author = {G. I. Laptev},
     title = {Quasilinear parabolic equations containing a {Volterra} operator in the coefficients},
     journal = {Sbornik. Mathematics},
     pages = {527--542},
     year = {1989},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a15/}
}
TY  - JOUR
AU  - G. I. Laptev
TI  - Quasilinear parabolic equations containing a Volterra operator in the coefficients
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 527
EP  - 542
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a15/
LA  - en
ID  - SM_1989_64_2_a15
ER  - 
%0 Journal Article
%A G. I. Laptev
%T Quasilinear parabolic equations containing a Volterra operator in the coefficients
%J Sbornik. Mathematics
%D 1989
%P 527-542
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a15/
%G en
%F SM_1989_64_2_a15
G. I. Laptev. Quasilinear parabolic equations containing a Volterra operator in the coefficients. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 527-542. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a15/

[1] Gordeziani D. G., Dzhangveladze T. A., Korshiya T. K., “O suschestvovanii i edinstvennosti resheniya odnogo klassa nelineinykh parabolicheskikh zadach”, Differents. uravneniya, 19:7 (1983), 1197–1207 | MR | Zbl

[2] Dzhangveladze T. A., Issledovanie pervoi kraevoi zadachi dlya nekotorykh nelineinykh integro-differentsialnykh uravnenii parabolicheskogo tipa, Izd-vo Tbil. un-ta, Tbilisi, 1983 | MR

[3] Dzhangveladze T. A., “Ob odnom nelineinom integro-differentsialnom uravnenii parabolicheskogo tipa”, Differents. uravneniya, 21:1 (1985), 41–46 | MR | Zbl

[4] Gaevskii X., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[5] Dubinskii Yu. L., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, M., 1976, 5–130

[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR