Fixed points and differentiability of the norm
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 461-469

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in a (real) uniformly smooth Banach space $X$ a nonexpansive mapping $f\colon X\to X$ has a fixed point if $$ \inf\{\|x-y\|:x\in f(\partial E),\ y\in X\setminus\operatorname{\overline{co}}E\}>0 $$ for some nonempty closed bounded (not necessarily convex) set $E\subset X$ with boundary $\partial E$ and closed convex hull $\operatorname{\overline{co}}E$. It is also shown that a nonexpansive mapping $f\colon B\to X$, where $B$ is a closed bounded convex subset of a Hilbert space or a two-dimensional strictly convex Banach space $X$, has a fixed point if $$ \{x+t(f(x)-x):0\leqslant 1\}\cap C\ne\varnothing\quad\text{for all}\quad x\in\partial C $$ for some nonempty closed (not necessarily convex) set $C\subset B$. Bibliography: 11 titles.
@article{SM_1989_64_2_a11,
     author = {N. M. Gulevich and S. V. Konyagin and R. V. Rakhmankulov},
     title = {Fixed points and differentiability of the norm},
     journal = {Sbornik. Mathematics},
     pages = {461--469},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/}
}
TY  - JOUR
AU  - N. M. Gulevich
AU  - S. V. Konyagin
AU  - R. V. Rakhmankulov
TI  - Fixed points and differentiability of the norm
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 461
EP  - 469
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/
LA  - en
ID  - SM_1989_64_2_a11
ER  - 
%0 Journal Article
%A N. M. Gulevich
%A S. V. Konyagin
%A R. V. Rakhmankulov
%T Fixed points and differentiability of the norm
%J Sbornik. Mathematics
%D 1989
%P 461-469
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/
%G en
%F SM_1989_64_2_a11
N. M. Gulevich; S. V. Konyagin; R. V. Rakhmankulov. Fixed points and differentiability of the norm. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 461-469. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/