Fixed points and differentiability of the norm
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 461-469
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that in a (real) uniformly smooth Banach space $X$ a nonexpansive mapping $f\colon X\to X$ has a fixed point if 
$$
\inf\{\|x-y\|:x\in f(\partial E),\ y\in X\setminus\operatorname{\overline{co}}E\}>0
$$
for some nonempty closed bounded (not necessarily convex) set $E\subset X$ with boundary $\partial E$ and closed convex hull $\operatorname{\overline{co}}E$. 
It is also shown that a nonexpansive mapping $f\colon B\to X$, where $B$ is a closed bounded convex subset of a Hilbert space or a two-dimensional strictly convex Banach space $X$, has a fixed point if
$$
\{x+t(f(x)-x):0\leqslant 1\}\cap C\ne\varnothing\quad\text{for all}\quad x\in\partial C
$$
for some nonempty closed (not necessarily convex) set $C\subset B$.
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1989_64_2_a11,
     author = {N. M. Gulevich and S. V. Konyagin and R. V. Rakhmankulov},
     title = {Fixed points and differentiability of the norm},
     journal = {Sbornik. Mathematics},
     pages = {461--469},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/}
}
                      
                      
                    N. M. Gulevich; S. V. Konyagin; R. V. Rakhmankulov. Fixed points and differentiability of the norm. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 461-469. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/
