Fixed points and differentiability of the norm
Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 461-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that in a (real) uniformly smooth Banach space $X$ a nonexpansive mapping $f\colon X\to X$ has a fixed point if $$ \inf\{\|x-y\|:x\in f(\partial E),\ y\in X\setminus\operatorname{\overline{co}}E\}>0 $$ for some nonempty closed bounded (not necessarily convex) set $E\subset X$ with boundary $\partial E$ and closed convex hull $\operatorname{\overline{co}}E$. It is also shown that a nonexpansive mapping $f\colon B\to X$, where $B$ is a closed bounded convex subset of a Hilbert space or a two-dimensional strictly convex Banach space $X$, has a fixed point if $$ \{x+t(f(x)-x):0<t\leqslant 1\}\cap C\ne\varnothing\quad\text{for all}\quad x\in\partial C $$ for some nonempty closed (not necessarily convex) set $C\subset B$. Bibliography: 11 titles.
@article{SM_1989_64_2_a11,
     author = {N. M. Gulevich and S. V. Konyagin and R. V. Rakhmankulov},
     title = {Fixed points and differentiability of the norm},
     journal = {Sbornik. Mathematics},
     pages = {461--469},
     year = {1989},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/}
}
TY  - JOUR
AU  - N. M. Gulevich
AU  - S. V. Konyagin
AU  - R. V. Rakhmankulov
TI  - Fixed points and differentiability of the norm
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 461
EP  - 469
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/
LA  - en
ID  - SM_1989_64_2_a11
ER  - 
%0 Journal Article
%A N. M. Gulevich
%A S. V. Konyagin
%A R. V. Rakhmankulov
%T Fixed points and differentiability of the norm
%J Sbornik. Mathematics
%D 1989
%P 461-469
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/
%G en
%F SM_1989_64_2_a11
N. M. Gulevich; S. V. Konyagin; R. V. Rakhmankulov. Fixed points and differentiability of the norm. Sbornik. Mathematics, Tome 64 (1989) no. 2, pp. 461-469. http://geodesic.mathdoc.fr/item/SM_1989_64_2_a11/

[1] Browder F. E., “Nonexpansive nonlinear operators in a Banach space”, Proc. Nat. Acad. Sci. USA., 54 (1965), 1041–1044 | DOI | MR | Zbl

[2] Göhde D., “Zum Prinzip der kontraktiven Abbildung”, Math. Nachr., 30 (1965), 251–258 | DOI | MR | Zbl

[3] Kirk W. A., “A fixed point theorem for mappings which do not increase distances”, Amer. Math. Monthly, 72 (1965), 1004–1006 | DOI | MR | Zbl

[4] Baillon J.-B., Quelques aspects de la theorie des points fixes dans les espaces de Banach. I, Séminaire d'analyse fonctionnele (Ecole Polytechnique), 1978–1979, exposé No. 7 | MR

[5] Caristi J., “Fixed point theorems for mappings satisfying wardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl

[6] Distel Dzh., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR

[7] Takahashi W., “The asymptotic behavior of nonlinear semigroups and invariant means”, J. Math. Anal. and Appl., 109 (1985), 130–139 | DOI | MR | Zbl

[8] Luu D. Q., “On the Radon–Nikodym property in Banach spaces”, Bull. Acad. Polon. Sci. (Math.), 28 (1980), 269–271 | MR | Zbl

[9] Zabreiko P. P., Kachurovskii R. I., Krasnoselskii M. A., “Ob odnom printsipe nepodvizhnoi tochki dlya operatorov v gilbertovom prostranstve”, Funktsion. analiz i ego pril., 1:2 (1967), 93–94 | MR | Zbl

[10] Bruck R. E., Jr., “Nonexpansive projections on subsets of Banach spaces”, Pacific J. Math., 47 (1973), 341–355 | MR | Zbl

[11] Edeistein M., “On non-expansive mappings of Banach spaces”, Proc. Cambr. Phil. Soc., 60 (1964), 439–447 | DOI | MR