Boundary conditions on thin manifolds and the semiboundedness of the three-particle Schrödinger operator with pointwise potential
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 161-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this article is to describe the formulation of a selfadjoint spectral problem with boundary conditions on a sufficiently thin manifold. Namely, let $\mathscr L$ be a selfadjoint operator in $L_2(\mathbf R^n)$, let $L$ be a smooth manifold, let $\mathscr L_0$ be the restriction of $\mathscr L$ to the lineal in $\mathscr D(\mathscr L_0)$ consisting of all functions which vanish in a neighborhood of $L$. It is shown that the deficiency elements of this restriction can be represented as “tensor layers” with densities of a definite class of smoothness, concentrated on the “boundary” of $L$. If $L$ is sufficiently thin, there is only one family of deficiency elements, and it is analogous to the single-layer potentials. In this case, calculation of the boundary form and the description of the selfadjoint extensions appears to be quite simple. This case is studied in detail because the investigation of the simplest model of the three-particle problem of quantum mechanics reduces to it. Bibliography: 16 titles.
@article{SM_1989_64_1_a9,
     author = {B. S. Pavlov},
     title = {Boundary conditions on thin manifolds and the semiboundedness of the three-particle {Schr\"odinger} operator with pointwise potential},
     journal = {Sbornik. Mathematics},
     pages = {161--175},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a9/}
}
TY  - JOUR
AU  - B. S. Pavlov
TI  - Boundary conditions on thin manifolds and the semiboundedness of the three-particle Schrödinger operator with pointwise potential
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 161
EP  - 175
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a9/
LA  - en
ID  - SM_1989_64_1_a9
ER  - 
%0 Journal Article
%A B. S. Pavlov
%T Boundary conditions on thin manifolds and the semiboundedness of the three-particle Schrödinger operator with pointwise potential
%J Sbornik. Mathematics
%D 1989
%P 161-175
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a9/
%G en
%F SM_1989_64_1_a9
B. S. Pavlov. Boundary conditions on thin manifolds and the semiboundedness of the three-particle Schrödinger operator with pointwise potential. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 161-175. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a9/

[1] Smirnov V. I., Kurs vysshei matematiki, T. IV, Fizmatgiz, M., 1958 | Zbl

[2] Sternin B. Yu., “Ellipticheskie i parabolicheskie zadachi na mnogoobraziyakh s granitsei, sostoyaschei iz komponent razlichnoi razmernosti”, Tr. MMO, 15 (1965), 346–382 | MR

[3] Novikov S. P., Sternin B. Yu., “Ellipticheskie operatory i podmnogoobraziya”, DAN SSSR, 171:3 (1966), 525–528 | MR | Zbl

[4] Blagoveschenskii A. S, Lavrentev K. K., “Trekhmernyi operator Laplasa s granichnym usloviem na osi”, Vestn. LGU, 1977, no. 1, 9–15 | Zbl

[5] Pavlov B. S., “Model potentsiala nulevogo radiusa s vnutrennei strukturoi”, TMF, 59:3 (1984), 345–354 | MR

[6] Pavlov B. S., “Teoriya rasshirenii i yavnoreshaemye modeli”, UMN, 42:6 (1987), 99–131 | MR

[7] Kuperin Yu. A., Makarov K. A., Pavlov B. S., “Model rasseyaniya sostavnykh chastits”, TMF, 69:1 (1986), 100–114 | MR

[8] Kuperin Yu. A., Makarov K. A., Merkurev S. P., Motovilov A. K., Pavlov B. S., “Kvantovaya teoriya rasseyaniya na energozavisyaschikh potentsialakh”, Svoistva malochastichnykh i kvark-adronnykh sistem, Ch. II, IFAN LitSSR, Vilnyus, 1986, 28–73

[9] Minlos R. A., Faddeev L. D., “Zamechanie o zadache trekh chastits s tochechnym vzaimodeistviem”, ZhETF, 41:6 (1961), 1850–1851 | MR

[10] Thomas L. E., “Multiparticle Schrödinger hamiltonians with point interactions”, Phys. Rev. D., 30:6 (1984), 1233–1236 | DOI | MR

[11] Schrader R., Commun. Math. Phys., 10 (1968), 155–178 | DOI | MR | Zbl

[12] Xenn K., Teoriya perenormirovok, Nauka, M., 1974 | MR

[13] Shondin Yu. G., “K zadache trekh tel s $\delta$-potentsialom”, TMF, 51:2 (1982), 181–191 | MR

[14] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[15] Skornyakov G. V., Ter-Martirosyan K. A., “Zadacha trekh tel pri korotkodeistvuyuschikh silakh. Rasseyanie neitronov maloi energii deitonami”, ZhETF, 31:5 (1956), 775 | Zbl

[16] Pavlov B. S., “Elektron v odnorodnom kristalle iz tochechnykh atomov s vnutrennei strukturoi”, TMF, 72:3 (1987), 403–415 | MR