Inverse problems of spectral analysis for Sturm–Liouville operators with nonseparated boundary conditions. II
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 141-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a continuation of Mat. Sb. (N.S.) 1986. V. 131(173). The author proves sufficient conditions that must be satisfied by the spectral data of any two similar Sturm–Liouville boundary value problems with nonseparated boundary conditions. Characteristic properties are obtained for conformal mappings of domains connected with such problems onto the upper half-plane. Bibliography: 4 titles.
@article{SM_1989_64_1_a8,
     author = {O. A. Plaksina},
     title = {Inverse problems of spectral analysis for {Sturm{\textendash}Liouville} operators with nonseparated boundary {conditions.~II}},
     journal = {Sbornik. Mathematics},
     pages = {141--160},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a8/}
}
TY  - JOUR
AU  - O. A. Plaksina
TI  - Inverse problems of spectral analysis for Sturm–Liouville operators with nonseparated boundary conditions. II
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 141
EP  - 160
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a8/
LA  - en
ID  - SM_1989_64_1_a8
ER  - 
%0 Journal Article
%A O. A. Plaksina
%T Inverse problems of spectral analysis for Sturm–Liouville operators with nonseparated boundary conditions. II
%J Sbornik. Mathematics
%D 1989
%P 141-160
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a8/
%G en
%F SM_1989_64_1_a8
O. A. Plaksina. Inverse problems of spectral analysis for Sturm–Liouville operators with nonseparated boundary conditions. II. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 141-160. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a8/

[1] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Matem. sb., 97 (1975), 540–606 | Zbl

[2] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozhenie, Nauk. dumka, Kiev., 1977 | MR

[3] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[4] Plaksina O. A., “Obratnye zadachi spektralnogo analiza dlya operatorov Shturma–Liuvillya s nerazdelennymi granichnymi usloviyami”, Matem. sb., 131(173) (1986), 3–26 | Zbl