Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 129-140
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that, if a generating manifold $M\in C^n$ does not contain proper submanifolds of the same $\mathrm{CR}$ dimension as $M$, then all $\mathrm{CR}$ functions can be extended from $M$ into some wedge with edge $M$. In particular, extension of all $\mathrm{CR}$ functions into a wedge necessarily obtains for manifolds of finite type.
Bibliography: 21 titles.
			
            
            
            
          
        
      @article{SM_1989_64_1_a7,
     author = {A. E. Tumanov},
     title = {Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type},
     journal = {Sbornik. Mathematics},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/}
}
                      
                      
                    A. E. Tumanov. Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/
                  
                