Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 129-140

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, if a generating manifold $M\in C^n$ does not contain proper submanifolds of the same $\mathrm{CR}$ dimension as $M$, then all $\mathrm{CR}$ functions can be extended from $M$ into some wedge with edge $M$. In particular, extension of all $\mathrm{CR}$ functions into a wedge necessarily obtains for manifolds of finite type. Bibliography: 21 titles.
@article{SM_1989_64_1_a7,
     author = {A. E. Tumanov},
     title = {Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type},
     journal = {Sbornik. Mathematics},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/}
}
TY  - JOUR
AU  - A. E. Tumanov
TI  - Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 129
EP  - 140
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/
LA  - en
ID  - SM_1989_64_1_a7
ER  - 
%0 Journal Article
%A A. E. Tumanov
%T Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type
%J Sbornik. Mathematics
%D 1989
%P 129-140
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/
%G en
%F SM_1989_64_1_a7
A. E. Tumanov. Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/