Extension of $\mathrm{CR}$ functions into a wedge from a manifold of finite type
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 129-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that, if a generating manifold $M\in C^n$ does not contain proper submanifolds of the same $\mathrm{CR}$ dimension as $M$, then all $\mathrm{CR}$ functions can be extended from $M$ into some wedge with edge $M$. In particular, extension of all $\mathrm{CR}$ functions into a wedge necessarily obtains for manifolds of finite type. Bibliography: 21 titles.
@article{SM_1989_64_1_a7,
     author = {A. E. Tumanov},
     title = {Extension of $\mathrm{CR}$ functions into a~wedge from a~manifold of finite type},
     journal = {Sbornik. Mathematics},
     pages = {129--140},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/}
}
TY  - JOUR
AU  - A. E. Tumanov
TI  - Extension of $\mathrm{CR}$ functions into a wedge from a manifold of finite type
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 129
EP  - 140
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/
LA  - en
ID  - SM_1989_64_1_a7
ER  - 
%0 Journal Article
%A A. E. Tumanov
%T Extension of $\mathrm{CR}$ functions into a wedge from a manifold of finite type
%J Sbornik. Mathematics
%D 1989
%P 129-140
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/
%G en
%F SM_1989_64_1_a7
A. E. Tumanov. Extension of $\mathrm{CR}$ functions into a wedge from a manifold of finite type. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a7/

[1] Greenfield S. J., “Cauchy–Riemann equations in Several variables”, Ann. Scuola Norm. Sup. Pisa., 22 (1968), 275–314 | MR | Zbl

[2] Baouendi M. S., Treves F., “About the holomorphic extension of CR-functions on real hypersurfaces in complex space”, Duke Math. J., 51 (1984), 77–107 | DOI | MR | Zbl

[3] Trepreau J.-M., “Sur le prolongement holomorphe des fonctions C-R definies sur une hypersurface reelle de classe $C^2$ dans $C^n$”, C. R. Acad. Sc. Paris. Ser. 1, 301:3 (1985), 61–63 | MR | Zbl

[4] Henkin G. M., “Solution des equations de Cauchy–Riemann tangentielles sur des varietes de Cauchy–Riemann $q$-concaves”, C. R. Acad. Sci. Paris, 292 (1981), 27–30 | MR | Zbl

[5] Airapetyan R. A., Khenkin G. M., “Analiticheskoe prodolzhenie CR-funktsii cherez “ostrie klina””, DAN, 259:4 (1981), 771–781 | MR

[6] Bogges A., Polking J. C., “Holomorphic extension of CR-functions”, Duke Math. J., 49:4 (1982), 757–784 | DOI | MR | Zbl

[7] Baouendi M. S., Rothschild L. P., “Normal forms for generic manifolds and holomorphic extension of CR functions”, J. Diff. Geom., 25:3 (1987), 431–467 | MR | Zbl

[8] Boggess A., Pitts J. T., Polking J. C., “The local hull of holomorphy of semirigid submanifolds of codimension two”, Michigan Math. J., 34:1 (1987), 105–118 | DOI | MR | Zbl

[9] Tumanov A. E., “Prodolzhenie CR-funktsii v klin s mnogoobraziya konechnogo tipa”, Kompleksnyi analiz i matematicheskaya fizika, Shkola-seminar, g. Divnogorsk, 1987, 111

[10] Pinchuk S. I., “Ob analiticheskom prodolzhenii golomorfnykh otobrazhenii”, Matem. sb., 98(140) (1975), 416–435 | Zbl

[11] Lewy H., “On the boundary behavior of holomorphic mappings”, Acad. Naz. Lincei, 35:1 (1977), 1–8

[12] Tumanov A. E., Khenkin G. M., “Lokalnaya kharakterizatsiya golomorfnykh avtomorfizmov oblastei Zigelya”, Funktsion. analiz, 17:4 (1983), 49–61 | MR | Zbl

[13] Webster S. M., “Holomorphic mapping of domains with generic corners”, Proc. Am. Math. Soc., 86:2 (1982), 236–240 | DOI | MR | Zbl

[14] Webster S. M., Analytic discs and the regulatity of CR-mappings of real submanifolds in $C^n$, Univ. 0f Minnesota. Math. Reports. 82–103

[15] Baouendi M. S., Jacobowitz H., Treves F., “On the analyticity of CR-mappings”, Ann. Math., 122 (1985), 365–400 | DOI | MR | Zbl

[16] Baouendi M. S., Treves F., “A property of the functions and distributions annihilated by a locally integrable system of complex vector fields”, Ann. of Math., 113 (1981), 341–421 | DOI | MR

[17] Bogges A., Pitts J., “CR-extension near a point of higher type”, Duke Math. J., 52:1 (1985), 67–102 | DOI | MR | Zbl

[18] Agranovskii M. L., Valskii R. E., “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR | Zbl

[19] Nagel A., Rudin W., “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43 (1976), 841–865 | DOI | MR | Zbl

[20] Stout E. L., “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR

[21] Beloshapka V. K., “Funktsii, plyurigarmonicheskie na mnogoobrazii”, Izv. AN SSSR. Ser. matem., 42 (1978), 475–483 | Zbl