On the asymptotic properties of functions holomorphic in tubular cones
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 97-113
Voir la notice de l'article provenant de la source Math-Net.Ru
For functions holomorphic in tube domains over a cone, the author studies the connection between their asymptotic behavior at the origin along orbits of one-parameter groups of linear transformations and asymptotic properties of the real parts of the boundary values of these functions. It is shown that, as a rule, the presence of certain asymptotics of the real part of a boundary value of a holomorphic function guarantees similar asymptotics for the whole function within the domain.
Bibliography: 6 titles.
@article{SM_1989_64_1_a5,
author = {B. I. Zavialov},
title = {On the asymptotic properties of functions holomorphic in tubular cones},
journal = {Sbornik. Mathematics},
pages = {97--113},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a5/}
}
B. I. Zavialov. On the asymptotic properties of functions holomorphic in tubular cones. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 97-113. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a5/