Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 85-96

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the distribution function for the maximum of the modulus of a set $n$ of jointly Gaussian random variables with given variance and zero mean is minimal if these variables are independent. For $n\leqslant N$ let $$ \alpha_{N,n}=\sup_{x_1,\dots,x_N\in B_2^n}\inf_{z\in S^{n-1}}\sup_{1\leqslant j\leqslant N}|\langle x_j,z\rangle|. $$ As a corollary of the result mentioned, the precise orders of the constants $\alpha_{N,n}$ are computed $\alpha_{N,n}\asymp\min\{1,\sqrt{n^{-1}\log(1+N/n)}\}$, and various improvements of these inequalities are obtained. The estimates are used in particular to construct lacunary analogues of the Rudin–Shapiro trigonometric polynomials. Bibliography: 23 titles.
@article{SM_1989_64_1_a4,
     author = {E. D. Gluskin},
     title = {Extremal properties of orthogonal parallelepipeds and their applications to the geometry of {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a4/}
}
TY  - JOUR
AU  - E. D. Gluskin
TI  - Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 85
EP  - 96
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a4/
LA  - en
ID  - SM_1989_64_1_a4
ER  - 
%0 Journal Article
%A E. D. Gluskin
%T Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces
%J Sbornik. Mathematics
%D 1989
%P 85-96
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a4/
%G en
%F SM_1989_64_1_a4
E. D. Gluskin. Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a4/