Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 85-96
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the distribution function for the maximum of the modulus of a set $n$ of jointly Gaussian random variables with given variance and zero mean is minimal if these variables are independent. For $n\leqslant N$ let
$$
\alpha_{N,n}=\sup_{x_1,\dots,x_N\in B_2^n}\inf_{z\in S^{n-1}}\sup_{1\leqslant j\leqslant N}|\langle x_j,z\rangle|.
$$
As a corollary of the result mentioned, the precise orders of the constants $\alpha_{N,n}$ are computed $\alpha_{N,n}\asymp\min\{1,\sqrt{n^{-1}\log(1+N/n)}\}$, and various improvements of these inequalities are obtained. The estimates are used in particular to construct lacunary analogues of the Rudin–Shapiro trigonometric polynomials.
Bibliography: 23 titles.
@article{SM_1989_64_1_a4,
author = {E. D. Gluskin},
title = {Extremal properties of orthogonal parallelepipeds and their applications to the geometry of {Banach} spaces},
journal = {Sbornik. Mathematics},
pages = {85--96},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a4/}
}
TY - JOUR AU - E. D. Gluskin TI - Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces JO - Sbornik. Mathematics PY - 1989 SP - 85 EP - 96 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a4/ LA - en ID - SM_1989_64_1_a4 ER -
E. D. Gluskin. Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a4/