On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 295-303
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B$ be a Banach space with norm $\|\cdot\|$, and let $(E,\mathfrak M)$ be a compact topological space with $\sigma$-algebra of measurable sets $\mathfrak M$ on which a nonnegative regular Borel measure $\mu$ is given. Further, let $L_1(E,B)$ be the Banach space of Bochner-integrable functions $u\colon E\to B$, with the norm $\|u\|_{L_1(E,B)}=\int_E\|u(t)\|\,d\mu$, and let $\Phi\colon K\to2^{L_1(E,B)}$ be a multivalued mapping and $P\colon K\to L_1(E,B)$ a single-valued mapping, where $K$ is a compact topological space. Under certain assumptions it is proved that for any $\varepsilon>0$ there exists a continuous mapping $g\colon K\to L_1(E,B)$ such that the following conditions hold for any $x\in K$: $g(x)\in\Phi(x)$, and $\|P(x)-g(x)\|_{L_1(E,B)}\rho_{L_1(E,B)}[P(x),\Phi(x)]+\varepsilon$, where $\rho_{L_1(E,B)}[\,\cdot\,{,}\,\cdot\,]$ is the distance in $L_1(E,B)$ from a point to a set.
Bibliography: 11 titles.
@article{SM_1989_64_1_a17,
author = {A. I. Bulgakov},
title = {On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions},
journal = {Sbornik. Mathematics},
pages = {295--303},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/}
}
TY - JOUR AU - A. I. Bulgakov TI - On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions JO - Sbornik. Mathematics PY - 1989 SP - 295 EP - 303 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/ LA - en ID - SM_1989_64_1_a17 ER -
%0 Journal Article %A A. I. Bulgakov %T On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions %J Sbornik. Mathematics %D 1989 %P 295-303 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/ %G en %F SM_1989_64_1_a17
A. I. Bulgakov. On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 295-303. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/