On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 295-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $B$ be a Banach space with norm $\|\cdot\|$, and let $(E,\mathfrak M)$ be a compact topological space with $\sigma$-algebra of measurable sets $\mathfrak M$ on which a nonnegative regular Borel measure $\mu$ is given. Further, let $L_1(E,B)$ be the Banach space of Bochner-integrable functions $u\colon E\to B$, with the norm $\|u\|_{L_1(E,B)}=\int_E\|u(t)\|\,d\mu$, and let $\Phi\colon K\to2^{L_1(E,B)}$ be a multivalued mapping and $P\colon K\to L_1(E,B)$ a single-valued mapping, where $K$ is a compact topological space. Under certain assumptions it is proved that for any $\varepsilon>0$ there exists a continuous mapping $g\colon K\to L_1(E,B)$ such that the following conditions hold for any $x\in K$: $g(x)\in\Phi(x)$, and $\|P(x)-g(x)\|_{L_1(E,B)}<\rho_{L_1(E,B)}[P(x),\Phi(x)]+\varepsilon$, where $\rho_{L_1(E,B)}[\,\cdot\,{,}\,\cdot\,]$ is the distance in $L_1(E,B)$ from a point to a set. Bibliography: 11 titles.
@article{SM_1989_64_1_a17,
     author = {A. I. Bulgakov},
     title = {On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions},
     journal = {Sbornik. Mathematics},
     pages = {295--303},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/}
}
TY  - JOUR
AU  - A. I. Bulgakov
TI  - On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 295
EP  - 303
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/
LA  - en
ID  - SM_1989_64_1_a17
ER  - 
%0 Journal Article
%A A. I. Bulgakov
%T On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
%J Sbornik. Mathematics
%D 1989
%P 295-303
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/
%G en
%F SM_1989_64_1_a17
A. I. Bulgakov. On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 295-303. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/

[1] Blagodatskikh V. I., “Nekotorye rezultaty po teorii differentsialnykh vklyuchenii”, Summer school on Ordinary Differential Equations, P. 2 (Brno), 1974, 29–67

[2] Azbelev N. V., Maksimov V. P., “Uravneniya s zapazdyvayuschim argumentom”, Differents. uravneniya, 8:12 (1982), 2027–2050 | MR

[3] Antosiewicz H. A., Cellina A., “Continuous selections and differential relations”, J. Differ. Equations, 19:2 (1975), 386–399 | DOI | MR

[4] Shvarts L., Analiz, T. 1, Mir, M., 1972

[5] Fryskowski A., “Continuous selections for a class of non-convex multi-valued maps”, Studia Math. (PRL), 76:2 (1983), 163–174 | MR

[6] Bogatyrev A. V., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii s nevypukloi pravoi chastyu”, Matem. sb., 120(162) (1983), 344–353 | MR

[7] Bulgakov A. I., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii s nevypuklymi obrazami i funktsionalno-differentsialnye vklyucheniya”, Differents. uravneniya, 22:10 (1986), 1659–1670 | MR | Zbl

[8] Bulgakov A. I., “Funktsionalno-differentsialnye vklyucheniya s nevypukloznachnym operatorom”, Kraevye zadachi, Izd-vo PPI, Perm, 1986, 23–27 | MR

[9] Pianigiani G., “On the fundamential theory of multivalued differential equations”, J. Differ. Equations, 25:1 (1977), 30–38 | DOI | MR | Zbl

[10] Tolstonogov A. A., Chugunov P. I., “O mnozhestve reshenii differentsialnogo vklyucheniya v banakhovom prostranstve. I”, Sib. matem. zhurn., 24:6 (1983), 144–159 | MR | Zbl

[11] Chugunov P. I., “Svoistva reshenii differentsialnykh vklyuchenii i upravlyaemye sistemy”, Prikladnaya matematika i pakety prikladnykh programm, SEI SO AN SSSR, Irkutsk, 1980, 155–179