On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 295-303

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a Banach space with norm $\|\cdot\|$, and let $(E,\mathfrak M)$ be a compact topological space with $\sigma$-algebra of measurable sets $\mathfrak M$ on which a nonnegative regular Borel measure $\mu$ is given. Further, let $L_1(E,B)$ be the Banach space of Bochner-integrable functions $u\colon E\to B$, with the norm $\|u\|_{L_1(E,B)}=\int_E\|u(t)\|\,d\mu$, and let $\Phi\colon K\to2^{L_1(E,B)}$ be a multivalued mapping and $P\colon K\to L_1(E,B)$ a single-valued mapping, where $K$ is a compact topological space. Under certain assumptions it is proved that for any $\varepsilon>0$ there exists a continuous mapping $g\colon K\to L_1(E,B)$ such that the following conditions hold for any $x\in K$: $g(x)\in\Phi(x)$, and $\|P(x)-g(x)\|_{L_1(E,B)}\rho_{L_1(E,B)}[P(x),\Phi(x)]+\varepsilon$, where $\rho_{L_1(E,B)}[\,\cdot\,{,}\,\cdot\,]$ is the distance in $L_1(E,B)$ from a point to a set. Bibliography: 11 titles.
@article{SM_1989_64_1_a17,
     author = {A. I. Bulgakov},
     title = {On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions},
     journal = {Sbornik. Mathematics},
     pages = {295--303},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/}
}
TY  - JOUR
AU  - A. I. Bulgakov
TI  - On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 295
EP  - 303
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/
LA  - en
ID  - SM_1989_64_1_a17
ER  - 
%0 Journal Article
%A A. I. Bulgakov
%T On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
%J Sbornik. Mathematics
%D 1989
%P 295-303
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/
%G en
%F SM_1989_64_1_a17
A. I. Bulgakov. On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 295-303. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a17/