On boundary values of solutions of elliptic equations degenerating on the boundary
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 243-262
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Necessary and sufficient conditions are established for the existence, on the domain's boundary, of a limit in $\mathscr L_p$, $p>1$, of solutions of second order elliptic equations having Tricomi type degeneracy on the boundary. 
Solvability of the Dirichlet problem for such an equation in spaces of type $W^1_{p,\mathrm{loc}}$ is proved.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1989_64_1_a14,
     author = {I. M. Petrushko},
     title = {On boundary values of solutions of elliptic equations degenerating on the boundary},
     journal = {Sbornik. Mathematics},
     pages = {243--262},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a14/}
}
                      
                      
                    I. M. Petrushko. On boundary values of solutions of elliptic equations degenerating on the boundary. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 243-262. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a14/
