Interpolation theorems for the spaces $L_{p,q}$
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 229-242

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp or optimal interpolation theorem is proved for the Lorentz spaces $L_{p,q}$, generalizing the Marcinkiewicz theorem and refining the Riesz–Thorin theorem and the Stein–Weiss theorem. This theorem extends to the spaces $\overline X_{\theta,p}$ of the real method constructed from any Banach pair; thus it extends also to Besov spaces. Bibliography: 12 titles.
@article{SM_1989_64_1_a13,
     author = {V. I. Ovchinnikov},
     title = {Interpolation theorems for the spaces $L_{p,q}$},
     journal = {Sbornik. Mathematics},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a13/}
}
TY  - JOUR
AU  - V. I. Ovchinnikov
TI  - Interpolation theorems for the spaces $L_{p,q}$
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 229
EP  - 242
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a13/
LA  - en
ID  - SM_1989_64_1_a13
ER  - 
%0 Journal Article
%A V. I. Ovchinnikov
%T Interpolation theorems for the spaces $L_{p,q}$
%J Sbornik. Mathematics
%D 1989
%P 229-242
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a13/
%G en
%F SM_1989_64_1_a13
V. I. Ovchinnikov. Interpolation theorems for the spaces $L_{p,q}$. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 229-242. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a13/