Distributions over an algebra of truncated polynomial
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 187-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study integrable distributions over the $K$-algebra $\mathscr O_n$ of truncated polynomials, where $K$ is a field of characteristic $p>0$. We obtain an analogue of the theorem of Frobenius; we describe the equivalence classes of $TI$-distributions, i.e., of those distributions $\mathscr L$ with respect to which the algebra $\mathscr O_n$ has no nontrivial $\mathscr L$-invariant ideals; we show that over a perfect field any $TI$-distribution is equivalent to a general Lie algebra of Cartan type $W_s(\mathscr F)$; and we find all the forms of the Zassenhaus algebra, in the process making essential use of the theory of representations of the chromatic quiver $_\circ\overrightarrow{_\rightsquigarrow}_\circ$ of Kronecker. Bibliography: 13 titles.
@article{SM_1989_64_1_a11,
     author = {M. I. Kuznetsov},
     title = {Distributions over an algebra of truncated polynomial},
     journal = {Sbornik. Mathematics},
     pages = {187--205},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a11/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
TI  - Distributions over an algebra of truncated polynomial
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 187
EP  - 205
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a11/
LA  - en
ID  - SM_1989_64_1_a11
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%T Distributions over an algebra of truncated polynomial
%J Sbornik. Mathematics
%D 1989
%P 187-205
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a11/
%G en
%F SM_1989_64_1_a11
M. I. Kuznetsov. Distributions over an algebra of truncated polynomial. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 187-205. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a11/

[1] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33 (1969), 251–322 | MR | Zbl

[2] Ree R., “On generalized Witt algebras”, Trans. Amer. Math. Soc., 83:2 (1956), 510–546 | DOI | MR | Zbl

[3] Wilson R. L., “Classification of generalized Witt algebras over algebraically closed fields”, Trans. Amer. Math. Soc., 153 (1971), 191–210 | DOI | MR | Zbl

[4] Block R., Wilson R. L., “On filtered Lie algebras and divided power algebras”, Commun. Algebra, 3 (1975), 571–589 | DOI | MR | Zbl

[5] Kats V. G., “Opisanie filtrovannykh algebr Li, s kotorymi assotsiirovany graduirovannye algebry Li kartanovskogo tipa”, Izv. AN SSSR. Ser. matem., 38 (1974), 800–834 | MR | Zbl

[6] Dzhumadildaev A. S., “Deformatsii obschei algebry Li kartanovskogo tipa”, DAN SSSR, 251:6 (1980), 1289–1292 | MR

[7] Kuznetsov M. I., “Modulyarnye prostye algebry Li s razreshimoi maksimalnoi podalgebroi”, Matem. sb., 101(143) (1976), 77–86 | Zbl

[8] Wilson R. L., “A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic”, J. Algebra, 40 (1976), 418–465 | DOI | MR | Zbl

[9] Bernshtein I. L., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, UMN, 28:2 (1973), 19–33 | MR

[10] Razmyslov Yu. P., “Prostye algebry Li, udovletvoryayuschie standartnomu lievu tozhdestvu stepeni 5”, Izv. AN SSSR. Ser. matem., 49 (1985), 592–634 | MR | Zbl

[11] Krylyuk Ya. C., O neprivodimykh modulyakh algebr Li kartanovskogo tipa v konechnoi kharakteristike, ch. I, II, III, Dep. v VINITI. No 3863–78, No 3864–78, No 3865–78

[12] Jacobson N., “Galois theory of purely inseparable fields of exponent one”, Amer. J. Math., 66 (1944), 645–648 | DOI | MR | Zbl

[13] Block R. E., “Determination of the differentiably simple rings with minimal ideal”, Ann. Math., 90 (1969), 433–459 | DOI | MR | Zbl