On the removal singularities of integrable CR functions
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 177-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is concerned with the problem of the removal of singularities of CR functions $f\in L^1(\Gamma)$, where $\Gamma$ is a smooth generating manifold in a domain $\Omega$ in $\mathbf C^n$. Under appropriate conditions on the Levi form of this manifold an analog of the Riemann removable singularities theorem for holomorphic functions is established. Bibliography: 12 titles.
@article{SM_1989_64_1_a10,
     author = {A. M. Kytmanov},
     title = {On the removal singularities of integrable {CR~functions}},
     journal = {Sbornik. Mathematics},
     pages = {177--185},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a10/}
}
TY  - JOUR
AU  - A. M. Kytmanov
TI  - On the removal singularities of integrable CR functions
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 177
EP  - 185
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a10/
LA  - en
ID  - SM_1989_64_1_a10
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%T On the removal singularities of integrable CR functions
%J Sbornik. Mathematics
%D 1989
%P 177-185
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a10/
%G en
%F SM_1989_64_1_a10
A. M. Kytmanov. On the removal singularities of integrable CR functions. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 177-185. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a10/

[1] Harvey R., Polking J., “Removable singularity of solutions of linear partial differential equations”, Acta Math., 125:1–2 (1970), 39–56 | DOI | MR | Zbl

[2] Khenkin G. M., “Effekt Gartogsa–Bokhnera na CR-mnogoobraziyakh”, DAN SSSR, 274:3 (1984), 553–558 | MR | Zbl

[3] Lee H. P., Wermer J., “Orthogonal measures for subsets of the boundary of the ball in $\mathbf{C}^2$”, Recent developments en several complex variables (Ann of Math. Studies). No 100, New Jersey, 1981, 277–289 | MR | Zbl

[4] Baouendi M. S., Treves F., “A property of functions and distributions annihilated by a locally integrable system of complex vector fields”, Ann. of Math., 113 (1981), 341–421 | DOI | MR

[5] Airapetyan R. A., Khenkin G. M., “Integralnye predstavleniya differentsialnykh form na mnogoobraziyakh Koshi–Rimana i teoriya CR-funktsii”, UMN, 39:3 (1984), 39–106 | MR | Zbl

[6] Boggess A., Polking T. C., “Holomorphic extension of CR-functions”, Duke Math. J., 49:4 (1982), 757–784 | DOI | MR | Zbl

[7] Hill C. D., Taiani G., “Families of analytic disks en $\mathbf{C}^n$ with boundaries on a prescribed CR-manifolds”, Ann. Scuola Norm. Sup. Pisa, 5:2 (1978), 327–380 | MR | Zbl

[8] Chirka E. M., “Analiticheskoe predstavlenie CR-funktsii”, Matem. sb., 98(140) (1975), 591–622

[9] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 4, VINITI, M., 1975, 13–142

[10] Stein E. M., Boundary behavior of holomorphic functions several complex variables, Math. Notes., Univ. Press, Princeton, 1972 | MR

[11] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[12] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbf{C}^n$, Mir, M., 1984 | MR | Zbl