The $A$-integral and boundary values of analytic functions
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 23-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a simply connected bounded domain on the complex plane $\mathbf C$, let $\gamma=\partial G$, and assume that $\gamma$ is a closed rectifiable Jordan curve. Denote by $m$ the Lebesgue linear measure on $\gamma$. For a function $F$ analytic on $G$ and for $\alpha>1$ let $F_\alpha^*(t)=\sup\{|F(z)|:z\in G,\ |z-t|<\alpha\rho(z,\gamma)\}$, $t\in\gamma$, where $\rho(z,\gamma)$ is the Euclidean distance from $z$ to $\gamma$. It is proved that if for some $\alpha>2$ \begin{equation} m\{t\in\gamma:F^*_\alpha(t)>\lambda\}=o(\lambda^{-1}),\qquad\lambda\to+\infty, \end{equation} then $F$ has a finite nontangential boundary value $F(t)$ for almost all $t\in\gamma$, and $$ (A)\int_\gamma F(t)\,dt=0, $$ where the integral on the left-hand side is understood as an $A$-integral. It is also proved that under condition (1) the function $F$ is representable in $G$ by the Cauchy $A$-integral of its nontangential boundary values on $\gamma$. Further, if $\gamma$ is regular (i.e., $m\{t\in\gamma:|t-z|\leqslant r\}\leqslant Cr$ for all $z\in\mathbf C$ and $r>0$, where the constant $C$ is independent of $z$ and $r$), then these assertions are valid if condition (1) holds for some $\alpha>1$. The question of representability of integrals of Cauchy type by Cauchy $A$-integrals is studied. In particular, well-known results of Ul'yanov on this question are carried over to the case of domains with a regular boundary. It is proved that the condition of regularity of the boundary cannot be weakened here. Bibliography: 18 titles.
@article{SM_1989_64_1_a1,
     author = {T. S. Salimov},
     title = {The $A$-integral and boundary values of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {23--39},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a1/}
}
TY  - JOUR
AU  - T. S. Salimov
TI  - The $A$-integral and boundary values of analytic functions
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 23
EP  - 39
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a1/
LA  - en
ID  - SM_1989_64_1_a1
ER  - 
%0 Journal Article
%A T. S. Salimov
%T The $A$-integral and boundary values of analytic functions
%J Sbornik. Mathematics
%D 1989
%P 23-39
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a1/
%G en
%F SM_1989_64_1_a1
T. S. Salimov. The $A$-integral and boundary values of analytic functions. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a1/

[1] Titchmarsh E. C., “On conjugate functions”, Proc. London Math. Soc., 29:1 (1929), 49–80 | DOI

[2] Ulyanov P. L., “Ob $A$-integrale Koshi”, UMN, 11:5 (1956), 223–229 | MR

[3] Ulyanov P. L., “Ob $A$-integralakh Koshi dlya konturov”, Dokl. AN SSSR, 112:3 (1957), 383–385 | MR

[4] Ulyanov P. L., “Ob integralakh tipa Koshi”, Tr. MIAN SSSR, 60 (1961), 262–281

[5] Ulyanov P. L., “$A$-integral i sopryazhennye funktsii”, Uchen. zap. Mosk. un-ta, 181 (1956), 139–157 | MR

[6] Aleksandrov A. B., “Ob $A$-integriruemosti granichnykh znachenii garmonicheskikh funktsii”, Matem. zametki, 30:1 (1981), 59–72 | MR | Zbl

[7] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[8] Fabes E. B., Jerison D. S., Kenig C. E., “Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure”, Ann. Math., 119 (184), 121–141 | DOI | MR | Zbl

[9] David P. G., “Operateurs integraux singuiiers sur certaines courbes du plan complexe”, Ann. Ec. Norm. Sup., 17 (1984), 157–189 | MR | Zbl

[10] Gusman M., Differentsirovanie integralov v $R^n$, Mir, M., 1978 | MR

[11] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M. L., 1950

[12] Calderon A. P., “Cauchy integral on Lipschits curves and applications”, Proc. Nat. Acad. Sc., 74:4 (1977), 1324–1327 | DOI | MR | Zbl

[13] Calderon A. P., Calderon C. P., Fabes E. B., Jodeit M., Riviere N., “Applications of the Cauchy integral along Lipschitz curves”, Bull. Amer. Math. Soc., 84:2 (1978), 287–290 | DOI | MR | Zbl

[14] Khuskivadze G. A., “Ob $A$-integralakh tipa Koshi”, Soobsch. AN Gruz. SSR, 27:6 (1961), 663–670 | Zbl

[15] Khuskivadze G. A., “O sopryazhennykh funktsiyakh i integralakh tipa Koshi”, Tr. Tbilis. matem. in-ta AN Gruz. SSR, 31 (1966), 5–54 | Zbl

[16] Khvedelidze B. V., “Metod integralov tipa Koshi v razryvnykh granichnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Sovremennye problemy matematiki, 7, VINITI, M., 1975, 5–162

[17] Salaev V. V., “Pryamye i obratnye otsenki dlya osobogo integrala Koshi po zamknutoi krivoi”, Matem. zametki, 19:3 (1976), 365–380 | MR | Zbl

[18] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR