Estimates of rearrangements and imbedding theorems
Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 1-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modulus of continuity of a function $f\in L^p(I^N)$ ($1\leqslant p<\infty$, $I=[0,1]$), 1-periodic in each variable is defined by $$ \omega_p(f;\delta)=\sup_{|h|\leqslant\delta}\biggl(\int_{I^N}|f(x)-f(x+h)|^p\,dx\biggr)^{1/p}. $$ The following estimate is established for the nonincreasing rearrangement of a function $f\in L^p(I^N)$ ($p,N\geqslant1$; $\Delta A_n=A_{n+1}-A_n$): \begin{equation} \sum^\infty_{n=s}2^{-nN}(\Delta f^*(2^{-nN}))^p +2^{-sp}\sum_{n=1}^s2^{n(p-N)}(\Delta f^*(2^{-nN}))^p\leqslant c\omega_p^p(f;2^{-s}). \end{equation} Also, analytic functions of Hardy class $H^p$ in the unit disk are considered. It is proved that the inequality (1) ($N=1$) holds for the rearrangements of their boundary values also when $0 (this is false for real functions of class $L^p$). Inequality (1) is used to find necessary and sufficient conditions for the space $H^\omega_{p,N}$ ($1\leqslant p) of functions with a given majorant of the $L^p$-modulus of continuity to be imbedded in the Orlicz classes $\varphi(L)$, where $\varphi$ satisfies the $\Delta_2$-condition and $\varphi(t)t^{-p}\uparrow$ on $(0,\infty)$. For $p\geqslant N$ the solution of this problem follows from estimates obtained earlier by the author (RZh.Mat., 1975, 8B 62). An analogous result is established for classes of functions in the Hardy space $H^p$ ($0). The imbeddings with limiting exponent (Sobolev and Hardy–Littlewood theorems) are limiting cases of the results in this article. Bibliography: 27 titles.
@article{SM_1989_64_1_a0,
     author = {V. I. Kolyada},
     title = {Estimates of rearrangements and imbedding theorems},
     journal = {Sbornik. Mathematics},
     pages = {1--21},
     year = {1989},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a0/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - Estimates of rearrangements and imbedding theorems
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 1
EP  - 21
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_64_1_a0/
LA  - en
ID  - SM_1989_64_1_a0
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T Estimates of rearrangements and imbedding theorems
%J Sbornik. Mathematics
%D 1989
%P 1-21
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_64_1_a0/
%G en
%F SM_1989_64_1_a0
V. I. Kolyada. Estimates of rearrangements and imbedding theorems. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a0/

[1] Hardy G. H., Littlewood J. E., “A convergence criterion for Fourier series”, Math. Zeit., 28:4 (1928), 612–634 | DOI | MR | Zbl

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[4] Ulyanov P. L., “O vlozhenii nekotorykh klassov funktsii”, Matem. zametki, 1:4 (1967), 405–414

[5] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_p^{\omega}$”, Izv. AN SSSR. Ser matem., 32 (1968), 649–686

[6] Ulyanov P. L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81(123) (1970), 104–131

[7] Kolyada V. I., “O vlozhenii nekotorykh klassov funktsii mnogikh peremennykh”, Sib. matem. zhurn., 14:4 (1973), 766–790 | Zbl

[8] Storozhenko E. A., “Neobkhodimye i dostatochnye usloviya dlya vlozheniya nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 37 (1973), 386–398 | Zbl

[9] Kolyada V. I., “O vlozhenii v klassy $\varphi(L)$”, Izv. AN SSSR. Ser. matem., 39 (1975), 418–437 | Zbl

[10] Osvald P., Moduli nepreryvnosti ravnoizmerimykh funktsii i priblizhenie funktsii algebraicheskimi mnogochlenami v $L^p$, Dis. $\dots$ kand. fiz.-matem. nauk, OGU, Odessa, 1978, 144 pp.

[11] Leindler L., “On embedding of classes $H_p^{\omega}$”, Acta Scient. Math., 31:1–2 (1970), 13–31 | MR | Zbl

[12] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948

[13] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966

[14] Kolyada V. I., “O vlozhenii klassov $H_p^{\omega_1,\dots,\omega_{\nu}}$”, Matem. sb., 127(169) (1985), 352–383 | MR | Zbl

[15] Kolyada V. I., “O vlozhenii v prostranstva VMO i $\exp L^{\alpha}$”, DAN SSSR, 287:2 (1986), 277–280 | MR | Zbl

[16] Kolyada V. I., “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, DAN SSSR, 293:3 (1987), 534–537 | MR | Zbl

[17] Walker P. L., “Some estimates for the Hardy–Littlewood maximal function in $R^n$”, Bull. London Math. Soc., 1975, no. 7, 139–143 | DOI | MR | Zbl

[18] Storozhenko E. A., Priblizhenie funktsii i teoremy vlozheniya v prostranstvakh $H^p$ i $L^p$, Dis. $\dots$ dokt. fiz.-matem. nauk, OGU, Odessa, 1979, 300 pp.

[19] Hardy G. H., Littlewood J. E., “Some properties of fractional integrals II”, Math. Zeit., 4:1 (1932), 403–439 | DOI | MR

[20] Gwilliam A. E., “On Lipschitz conditions”, Proc. London Math. Soc. Ser. 2, 40:5 (1935), 353–364

[21] Storozhenko E. A., “O nekotorykh teoremakh vlozheniya”, Matem. zametki, 19:2 (1976), 187–200 | MR | Zbl

[22] Storozhenko E. A., “O priblizhenii funktsii klassa $H^p$, $0

1$”, Soobsch. AN GruzSSR, 88:1 (1977), 45–48 | MR

[23] Storozhenko E. A., “Ob odnoi zadache Khardi–Littlvuda”, Matem. sb., 119(161):4 (1982), 564–583 | MR | Zbl

[24] Hardy G. H., Littlewood J. E., “A maximal theorem with functiontheoretic applications”, Acta Math., 54 (1930), 81–116 | DOI | MR | Zbl

[25] Oskolkov K. I., “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103(145) (1977), 563–589 | MR | Zbl

[26] Kolyada V. I., Teoremy vlozheniya i metricheskie svoistva funktsii, Dis. $\dots$ dokt. fiz.-matem. nauk, OGU, Odessa, 1986, 282 pp.

[27] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^p$, $0

1$”, Matem. sb., 98(140) (1975), 395–415 | MR | Zbl