(this is false for real functions of class $L^p$). Inequality (1) is used to find necessary and sufficient conditions for the space $H^\omega_{p,N}$ ($1\leqslant p ). The imbeddings with limiting exponent (Sobolev and Hardy–Littlewood theorems) are limiting cases of the results in this article. Bibliography: 27 titles.
@article{SM_1989_64_1_a0,
author = {V. I. Kolyada},
title = {Estimates of rearrangements and imbedding theorems},
journal = {Sbornik. Mathematics},
pages = {1--21},
year = {1989},
volume = {64},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_64_1_a0/}
}
V. I. Kolyada. Estimates of rearrangements and imbedding theorems. Sbornik. Mathematics, Tome 64 (1989) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/SM_1989_64_1_a0/
[1] Hardy G. H., Littlewood J. E., “A convergence criterion for Fourier series”, Math. Zeit., 28:4 (1928), 612–634 | DOI | MR | Zbl
[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[4] Ulyanov P. L., “O vlozhenii nekotorykh klassov funktsii”, Matem. zametki, 1:4 (1967), 405–414
[5] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_p^{\omega}$”, Izv. AN SSSR. Ser matem., 32 (1968), 649–686
[6] Ulyanov P. L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81(123) (1970), 104–131
[7] Kolyada V. I., “O vlozhenii nekotorykh klassov funktsii mnogikh peremennykh”, Sib. matem. zhurn., 14:4 (1973), 766–790 | Zbl
[8] Storozhenko E. A., “Neobkhodimye i dostatochnye usloviya dlya vlozheniya nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 37 (1973), 386–398 | Zbl
[9] Kolyada V. I., “O vlozhenii v klassy $\varphi(L)$”, Izv. AN SSSR. Ser. matem., 39 (1975), 418–437 | Zbl
[10] Osvald P., Moduli nepreryvnosti ravnoizmerimykh funktsii i priblizhenie funktsii algebraicheskimi mnogochlenami v $L^p$, Dis. $\dots$ kand. fiz.-matem. nauk, OGU, Odessa, 1978, 144 pp.
[11] Leindler L., “On embedding of classes $H_p^{\omega}$”, Acta Scient. Math., 31:1–2 (1970), 13–31 | MR | Zbl
[12] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948
[13] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966
[14] Kolyada V. I., “O vlozhenii klassov $H_p^{\omega_1,\dots,\omega_{\nu}}$”, Matem. sb., 127(169) (1985), 352–383 | MR | Zbl
[15] Kolyada V. I., “O vlozhenii v prostranstva VMO i $\exp L^{\alpha}$”, DAN SSSR, 287:2 (1986), 277–280 | MR | Zbl
[16] Kolyada V. I., “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, DAN SSSR, 293:3 (1987), 534–537 | MR | Zbl
[17] Walker P. L., “Some estimates for the Hardy–Littlewood maximal function in $R^n$”, Bull. London Math. Soc., 1975, no. 7, 139–143 | DOI | MR | Zbl
[18] Storozhenko E. A., Priblizhenie funktsii i teoremy vlozheniya v prostranstvakh $H^p$ i $L^p$, Dis. $\dots$ dokt. fiz.-matem. nauk, OGU, Odessa, 1979, 300 pp.
[19] Hardy G. H., Littlewood J. E., “Some properties of fractional integrals II”, Math. Zeit., 4:1 (1932), 403–439 | DOI | MR
[20] Gwilliam A. E., “On Lipschitz conditions”, Proc. London Math. Soc. Ser. 2, 40:5 (1935), 353–364
[21] Storozhenko E. A., “O nekotorykh teoremakh vlozheniya”, Matem. zametki, 19:2 (1976), 187–200 | MR | Zbl
[22] Storozhenko E. A., “O priblizhenii funktsii klassa $H^p$, $0
1$”, Soobsch. AN GruzSSR, 88:1 (1977), 45–48 | MR[23] Storozhenko E. A., “Ob odnoi zadache Khardi–Littlvuda”, Matem. sb., 119(161):4 (1982), 564–583 | MR | Zbl
[24] Hardy G. H., Littlewood J. E., “A maximal theorem with functiontheoretic applications”, Acta Math., 54 (1930), 81–116 | DOI | MR | Zbl
[25] Oskolkov K. I., “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103(145) (1977), 563–589 | MR | Zbl
[26] Kolyada V. I., Teoremy vlozheniya i metricheskie svoistva funktsii, Dis. $\dots$ dokt. fiz.-matem. nauk, OGU, Odessa, 1986, 282 pp.
[27] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^p$, $0
1$”, Matem. sb., 98(140) (1975), 395–415 | MR | Zbl