Subgroups of profinite groups acting on trees
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 405-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The fundamental groups $\Pi_1(\mathscr G,\Gamma)$ of finite graphs of profinite groups are studied here; the definitions are similar to those of the analogous constructions in Bass-Serre theory. Results are obtained on the following: the disposition of finite and finite normal subgroups of $\Pi_1(\mathscr G,\Gamma)$; intersections of conjugates of vertex-groups; and normalizers of vertex-groups. In the case where $\Pi_1(\mathscr G,\Gamma)$ is not an amalgamated free product $A*_NB$, where $[A:N]=2=[B:N]$, it is proved that a normal subgroup of $\Pi_1(\mathscr G,\Gamma)$ either lies in every edge-group or else has a nonabelian free profinite subgroup. Proofs are based on the examination of fixed elements of profinite trees with profinite groups acting on them. The definition of profinite tree is close to that in the article RZh.Mat., 1978, 11A232. Some of our results have been proved already, but only for free products of profinite groups. The methods were different from those in this paper (see RZh.Mat., 1979, 9A180 and 1985, 8A232). Bibliography: 16 titles.
@article{SM_1989_63_2_a9,
     author = {P. A. Zalesskii and O. V. Mel'nikov},
     title = {Subgroups of profinite groups acting on trees},
     journal = {Sbornik. Mathematics},
     pages = {405--424},
     year = {1989},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a9/}
}
TY  - JOUR
AU  - P. A. Zalesskii
AU  - O. V. Mel'nikov
TI  - Subgroups of profinite groups acting on trees
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 405
EP  - 424
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a9/
LA  - en
ID  - SM_1989_63_2_a9
ER  - 
%0 Journal Article
%A P. A. Zalesskii
%A O. V. Mel'nikov
%T Subgroups of profinite groups acting on trees
%J Sbornik. Mathematics
%D 1989
%P 405-424
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a9/
%G en
%F SM_1989_63_2_a9
P. A. Zalesskii; O. V. Mel'nikov. Subgroups of profinite groups acting on trees. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 405-424. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a9/

[1] Kokh Kh., Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR

[2] Maklein S., Gomologiya, Mir, M., 1966

[3] Melnikov O. V., “Normalnye deliteli svobodnykh prokonechnykh grupp”, Izv. AN SSSR. Ser. matem., 42 (1978), 3–25 | MR

[4] Melnikov O. V., “Podgruppa Frattini amalgamirovannogo svobodnogo proizvedeniya prokonechnykh rpynn”, XVI Vsesoyuz. algebr, konf. (Tezisy), Ch. 1, L., 1981, 107

[5] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, Fizmatgiz, M., 1958

[6] Tishin Yu. V., “Normalnye podgruppy svobodnykh konstruktsii”, Matem. sb., 126(168) (1985), 377–396 | MR | Zbl

[7] Brumer A., “Pseudo-compact algebras, profinite groups and class formation”, J. Algebra, 4:3 (1966), 442–470 | DOI | MR | Zbl

[8] Chiswell I. M., “Exact sequences associated with a graph of groups”, J. Pure Appl. Algebra, 8:1 (1976), 63–74 | DOI | MR | Zbl

[9] Chiswell I. M., Collins D. J. Huebschmann J., “Aspherical group presentations”, Math. Z., 178:1 (1981), 1–36 | DOI | MR | Zbl

[10] Dicks W., “Groups, Trees and Projective Modules”, Lect. Notes Math., 790 (1980) | MR | Zbl

[11] Gildenhuys D., Ribes L., “Profinite groups and Boolean graphs”, J. Pure Appl. Algebra, 12:1 (1978), 21–47 | DOI | MR | Zbl

[12] Gruenberg K. W., “Cohomological Topics in Group Theory”, Lect. Notes Math., 143 (1970) | MR | Zbl

[13] Gruenberg K. W., “Projective profinite groups”, J. London Math. Soc., 42:1 (1967), 155–165 | DOI | MR | Zbl

[14] Herfort W., Ribes L., “Torsion elements and centralizers in free products of profinite groups”, J. reine angew. Math., 358 (1985), 155–161 | MR | Zbl

[15] Olticar B. C., Ribes L., “On the Frattini subgroup of free products of profinite groups”, Commun. Algebra, 7:3 (1979), 313–325 | DOI | MR

[16] Ribes L., “On amalgamated products of profinite groups”, Math. Z., 123:4 (1971), 357–365 | DOI | MR