Closed orbits of Borel subgroups
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 375-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers an algebraic action of a connected reductive algebraic group $G$ defined over an algebraically closed field $k$ on an affine irreducible algebraic variety $X$, and studies the question of when the action of a Borel subgroup $B$ of $G$ on $X$ is stable, i.e., the $B$-orbit of any point belonging to some nonempty open subset of $X$ is closed in $X$. A criterion for stability is obtained: Suppose that $\operatorname{char}k=0$. In order that the action of $B$ on $X$ be stable it is necessary, and, if $G$ is semisimple and the group of divisor classes $\mathrm{Cl}X$ is periodic, also sufficient that $X$ contain a point with a finite $G$-stabilizer. For an action $G:V$ defined by a linear representation $G\to GL(V)$ the cases when $B:V$ is not stable and either $G$ is simple or $G$ is semisimple and the action $G:V$ is irreducible are listed. A general criterion for an orbit of a connected solvable group acting on an affine variety to be closed is also obtained, and it is used to obtain a simple sufficient condition for an orbit of such a group, acting linearly, to be closed. Bibliography: 30 titles.
@article{SM_1989_63_2_a7,
     author = {V. L. Popov},
     title = {Closed orbits of {Borel} subgroups},
     journal = {Sbornik. Mathematics},
     pages = {375--392},
     year = {1989},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Closed orbits of Borel subgroups
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 375
EP  - 392
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/
LA  - en
ID  - SM_1989_63_2_a7
ER  - 
%0 Journal Article
%A V. L. Popov
%T Closed orbits of Borel subgroups
%J Sbornik. Mathematics
%D 1989
%P 375-392
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/
%G en
%F SM_1989_63_2_a7
V. L. Popov. Closed orbits of Borel subgroups. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 375-392. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/

[1] Mumford D., Fogarty J., Geometric Invariant Theory. Erg. Math, und ihrer Grenzg, V. 34, Springer-Verlag, Berlin, 1982 | MR

[2] Luna D., “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl

[3] Luna D., “Adherences d'orbits et invariants”, Invent. Math., 29, 231–238 | DOI | MR | Zbl

[4] Kempf G., Ness L., “The length of vectors in representation spaces”, Lect. Notes in Math., 732 (1979), 233–243 | DOI | MR | Zbl

[5] Popov V. L., “Kriterii stabilnosti deistviya poluprostoi gruppy na faktorialnom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 34 (1970), 523–531 | MR

[6] Popov V. L., “O stabilnosti deistviya algebraicheskoi gruppy na algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 371–385 | MR | Zbl

[7] Rosenlicht M., “On quotient varieties and the affine embeddings of certain homogeneous spaces”, Trans. Am. Math. Soc., 101 (1961), 211–223 | DOI | MR | Zbl

[8] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funktsion. analiz i ego pril., 6:1 (1972), 51–62 | Zbl

[9] Elashvili A. G., “Statsionarnye podalgebry tochek obschego polozheniya dlya neprivodimykh lineinykh grupp Li”, Funktsion. analiz i ego pril., 6:2 (1972), 65–78 | Zbl

[10] Popov V. L., “Klassifikatsiya trekhmernykh affinnykh algebraicheskikh mnogoobrazii, kvaziodnorodnykh otnositelno algebraicheskoi gruppy”, Izv. AN SSSR. Ser. matem., 39 (1975), 566–609 | Zbl

[11] Vinberg E. B., “O zamykanii orbity reduktivnoi lineinoi gruppy”, Algebra, Izd-vo MGU, M., 1980, 31–36

[12] Steinberg R., “Conjugacy classes in algebraic groups”, Lect. Notes in Math., 366 (1974), 1–159 | DOI | MR

[13] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[14] Brion M., Luna D., Vust T., “Espaces homogènes sphériques”, Invent. Math., 84 (1986), 617–632 | DOI | MR | Zbl

[15] Luna D., Richardson R. W., “A generalization of the Chevalley restriction theorem”, Duke Math. J., 46:3 (1979), 487–496 | DOI | MR | Zbl

[16] Panyushev D. I., “Orbity naibolshei razmernosti razreshimykh podgrupp reduktivnykh lineinykh grupp i reduktsiya dlya $U$-invariantov”, Matem. sbornik, 132(174):3 (1987), 371–382 | Zbl

[17] Andreev E. M., Popov V. L., “O statsionarnykh podgruppakh tochek obschego polozheniya v prostranstve predstavleniya poluprostoi gruppy Li”, Funktsion. analiz i ego pril., 5:4 (1971), 1–8 | MR | Zbl

[18] Knop F., Littelmann P., Der Grad erzeugender Funktionen von Invariantenringen, Preprint Univ. Basel, 1986 | MR

[19] Andreev E. M., Vinberg E. B., Elashvili A. G., “Orbity naibolshei razmernosti poluprostykh lineinykh grupp Li”, Funktsion. analiz i ego pril., 1:4 (1967), 3–7 | MR | Zbl

[20] Séminaire Chevalley “Anneaux de Chow”, Secr. math. E.N.S., 1958

[21] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 749–763 | MR

[22] Popov V. L., “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Izv. AN SSSR. Ser. matem., 38 (1974), 294–322 | Zbl

[23] Kac V. G., Popov V. L., Vinberg E. B., “Sur les groupes algébriques don't l'algèbre des invariants est libre”, CRAS Paris, 283 (1976), 875–878 | MR | Zbl

[24] Zhelobenko D. P., Lektsii po teorii grupp Li, Dubna, 1965

[25] Vinberg E. B., Onischik A. L., Seminar po algebraicheskim gruppam i gruppam Li, Izd-vo MGU, M., 1969

[26] Dadok J., Kac V. G., “Polar representations”, J. Algebra, 92:2 (1985), 504–524 | DOI | MR | Zbl

[27] Weyl H., “Elementare Theorie der konvexen Polyeder”, Comment. Math. Helvet., 7:4 (1935), 290–306 | MR | Zbl

[28] Burbaki N., Gruppy i algebry Li, Glavy IV, V, VI, Mir, M., 1972 | MR | Zbl

[29] Séminaire Chevalley “Classification des groupes de Lie algébriques”, Secr. math. E.N.S., 1958

[30] Popov V. L., “Homological dimension of algebras of invariants”, J. für die reine und ang. Math., 341 (1983.), 157–173 | MR | Zbl