Closed orbits of Borel subgroups
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 375-392

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers an algebraic action of a connected reductive algebraic group $G$ defined over an algebraically closed field $k$ on an affine irreducible algebraic variety $X$, and studies the question of when the action of a Borel subgroup $B$ of $G$ on $X$ is stable, i.e., the $B$-orbit of any point belonging to some nonempty open subset of $X$ is closed in $X$. A criterion for stability is obtained: Suppose that $\operatorname{char}k=0$. In order that the action of $B$ on $X$ be stable it is necessary, and, if $G$ is semisimple and the group of divisor classes $\mathrm{Cl}X$ is periodic, also sufficient that $X$ contain a point with a finite $G$-stabilizer. For an action $G:V$ defined by a linear representation $G\to GL(V)$ the cases when $B:V$ is not stable and either $G$ is simple or $G$ is semisimple and the action $G:V$ is irreducible are listed. A general criterion for an orbit of a connected solvable group acting on an affine variety to be closed is also obtained, and it is used to obtain a simple sufficient condition for an orbit of such a group, acting linearly, to be closed. Bibliography: 30 titles.
@article{SM_1989_63_2_a7,
     author = {V. L. Popov},
     title = {Closed orbits of {Borel} subgroups},
     journal = {Sbornik. Mathematics},
     pages = {375--392},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Closed orbits of Borel subgroups
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 375
EP  - 392
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/
LA  - en
ID  - SM_1989_63_2_a7
ER  - 
%0 Journal Article
%A V. L. Popov
%T Closed orbits of Borel subgroups
%J Sbornik. Mathematics
%D 1989
%P 375-392
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/
%G en
%F SM_1989_63_2_a7
V. L. Popov. Closed orbits of Borel subgroups. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 375-392. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a7/