On the extension of varieties defined by quadratic equations
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 305-317
Voir la notice de l'article provenant de la source Math-Net.Ru
One says that a smooth projective variety $V\subset\mathbf P^n$ extends $m$ steps nontrivially if there exists a projective variety $W\subset\mathbf P^{n+m}$ such that $V=W\cap\mathbf P^n$, where $W$ is not a cone, is nonsingular along $V$, and is transversal to $\mathbf P^n$.
In the paper it is proved, in particular, that if $V$ is given by quadratic equations, $\operatorname{dim}V\geqslant2$ and $h^1(V,\mathscr T_V(-1))=m$, then the variety $V$ extends nontrivially at most $m$ steps, and this bound is attained for certain varieties.
Bibliography: 16 titles.
@article{SM_1989_63_2_a2,
author = {S. M. L'vovskii},
title = {On the extension of varieties defined by quadratic equations},
journal = {Sbornik. Mathematics},
pages = {305--317},
publisher = {mathdoc},
volume = {63},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/}
}
S. M. L'vovskii. On the extension of varieties defined by quadratic equations. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 305-317. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/