On the extension of varieties defined by quadratic equations
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 305-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One says that a smooth projective variety $V\subset\mathbf P^n$ extends $m$ steps nontrivially if there exists a projective variety $W\subset\mathbf P^{n+m}$ such that $V=W\cap\mathbf P^n$, where $W$ is not a cone, is nonsingular along $V$, and is transversal to $\mathbf P^n$. In the paper it is proved, in particular, that if $V$ is given by quadratic equations, $\operatorname{dim}V\geqslant2$ and $h^1(V,\mathscr T_V(-1))=m, then the variety $V$ extends nontrivially at most $m$ steps, and this bound is attained for certain varieties. Bibliography: 16 titles.
@article{SM_1989_63_2_a2,
     author = {S. M. L'vovskii},
     title = {On the extension of varieties defined by quadratic equations},
     journal = {Sbornik. Mathematics},
     pages = {305--317},
     year = {1989},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/}
}
TY  - JOUR
AU  - S. M. L'vovskii
TI  - On the extension of varieties defined by quadratic equations
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 305
EP  - 317
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/
LA  - en
ID  - SM_1989_63_2_a2
ER  - 
%0 Journal Article
%A S. M. L'vovskii
%T On the extension of varieties defined by quadratic equations
%J Sbornik. Mathematics
%D 1989
%P 305-317
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/
%G en
%F SM_1989_63_2_a2
S. M. L'vovskii. On the extension of varieties defined by quadratic equations. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 305-317. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/

[1] Scorza G., “Sopra una certa classe di varietà razionali”, Opere scelte, 1, Roma, 1960, 372–375

[2] Scorza G., “Sulle varietà di Segre”, Opere scelte, 1, Roma, 1960, 376–386

[3] Sommese A. J., “Hyperplane sections”, Lect. notes math., 1981, no. 862, 232–271 | DOI | MR | Zbl

[4] Fujita T., “Impossibility criterion of being an ample divisor”, J. Math Soc. Japan, 34:2 (1982), 355–363 | DOI | MR | Zbl

[5] Fujita T., “Rational retractions onto ample divisors”, Sci. Pap. Coll. Arts and Sciences Univ. Tokyo, 33:1 (1983), 33–39 | MR | Zbl

[6] Lvovskii S. M., “Priznak nepredstavimosti mnogoobraziya v vide giperploskogo secheniya”, Vestn. MGU. Ser. matem. mekh., 1985, no. 3, 25–28 | MR

[7] Mukai S., Fano varieties of coindex 2, Preprint, Tokyo, 1983

[8] Lvovskii S. M., Prodolzhenie mnogoobrazii, sootvetstvuyuschikh orbitam prostykh algebraicheskikh grupp, Dep. VINITI 19.01.87. No 390-V87

[9] Lvovskii S. M., “O chisle shagov prodolzheniya mnogoobraziya, zadannogo kvadratichnymi uravneniyami”, Algebra, logika i teoriya chisel, MGU, M., 1986, 57–60 | MR

[10] Kleiman S. L., “Chislennaya teoriya osobennostei”, UMN, 35:6 (1980), 69–148 | MR | Zbl

[11] Atiyah M. F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl

[12] Saint-Donat B., “Projective models of K3 surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl

[13] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki, 12, VINITI, M., 1979, 59–157 | MR

[14] Mori S., Mukai S., “Classification of Fano 3 – folds with $B_2\geq2$”, Manuscr. math., 36:2 (1981), 147–162 | DOI | MR | Zbl

[15] Mukai S., Umemura H., “Minimal rational threefolds”, Lect. notes math., 1016, 1983, 490–518 | MR | Zbl

[16] Mumford D., “Varieties defined by quadratic equations”, Questions on algebraic varieties, Cremonese, Roma, 1970, 31–100 | MR