On the extension of varieties defined by quadratic equations
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 305-317

Voir la notice de l'article provenant de la source Math-Net.Ru

One says that a smooth projective variety $V\subset\mathbf P^n$ extends $m$ steps nontrivially if there exists a projective variety $W\subset\mathbf P^{n+m}$ such that $V=W\cap\mathbf P^n$, where $W$ is not a cone, is nonsingular along $V$, and is transversal to $\mathbf P^n$. In the paper it is proved, in particular, that if $V$ is given by quadratic equations, $\operatorname{dim}V\geqslant2$ and $h^1(V,\mathscr T_V(-1))=m$, then the variety $V$ extends nontrivially at most $m$ steps, and this bound is attained for certain varieties. Bibliography: 16 titles.
@article{SM_1989_63_2_a2,
     author = {S. M. L'vovskii},
     title = {On the extension of varieties defined by quadratic equations},
     journal = {Sbornik. Mathematics},
     pages = {305--317},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/}
}
TY  - JOUR
AU  - S. M. L'vovskii
TI  - On the extension of varieties defined by quadratic equations
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 305
EP  - 317
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/
LA  - en
ID  - SM_1989_63_2_a2
ER  - 
%0 Journal Article
%A S. M. L'vovskii
%T On the extension of varieties defined by quadratic equations
%J Sbornik. Mathematics
%D 1989
%P 305-317
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/
%G en
%F SM_1989_63_2_a2
S. M. L'vovskii. On the extension of varieties defined by quadratic equations. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 305-317. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a2/