On a problem of P.\,S.~Aleksandrov
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 539-545
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An old problem of P. S. Aleksandrov, known today as the CE-problem, is solved. Using $K$-theory, an infinite-dimensional compactum with integer cohomological dimension equal to three is constructed. This shows that cell-like maps may raise dimension.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1989_63_2_a17,
     author = {A. N. Dranishnikov},
     title = {On a problem of {P.\,S.~Aleksandrov}},
     journal = {Sbornik. Mathematics},
     pages = {539--545},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a17/}
}
                      
                      
                    A. N. Dranishnikov. On a problem of P.\,S.~Aleksandrov. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 539-545. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a17/
