On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 483-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A characterization from the point of view of the maximum modulus principle is given for harmonic domains, that is, domains for which there is an affirmative answer to the question of the existence of an analytic function on the universal covering surface which is automorphic with respect to the covering group and whose boundary values have prescribed modulus. It is shown that harmonic domains are distinguished from other domains by the “sameness” of the maximum modulus principle for the classes of bounded harmonic and bounded analytic functions. It is shown that the maximum modulus principle plays an important role in the study of a series of questions from the classical theory of cluster sets. In particular, it is noted that the assertions of some of the well-known theorems of the theory of cluster sets are equivalent to the corresponding maximum modulus principle being satisfied. Bibliography: 16 titles.
@article{SM_1989_63_2_a13,
     author = {M. V. Samokhin},
     title = {On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness},
     journal = {Sbornik. Mathematics},
     pages = {483--498},
     year = {1989},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a13/}
}
TY  - JOUR
AU  - M. V. Samokhin
TI  - On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 483
EP  - 498
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a13/
LA  - en
ID  - SM_1989_63_2_a13
ER  - 
%0 Journal Article
%A M. V. Samokhin
%T On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness
%J Sbornik. Mathematics
%D 1989
%P 483-498
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a13/
%G en
%F SM_1989_63_2_a13
M. V. Samokhin. On some boundary properties of bounded analytic functions and the maximum modulus principle in domains of arbitrary connectedness. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 483-498. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a13/

[1] Samokhin M. V., “Ob avtomorfnykh analiticheskikh funktsiyakh s zadannym modulem granichnykh znachenii”, Matem. sb., 101(143) (1976), 189–203 | Zbl

[2] Samokhin M. V., “O nekotorykh voprosakh, svyazannykh s zadachei suschestvovaniya avtomorfnykh analiticheskikh funktsii s zadannym modulem granichnykh znachenii”, Matem. sb., 111(153) (1980), 557–578 | MR | Zbl

[3] Gamelin T., “Cluster values of bounded analytic functions”, TAMS, 225 (1977), 295–306 | DOI | MR | Zbl

[4] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[5] Gamelin T., “The Shilov boundary of $H^{\infty}(U)$”, Amer. J. Math., 96 (1974), 79–103 | DOI | MR | Zbl

[6] Gamelin T., “Iversen theorem and fiber algebras”, Pacific J. Math., 46 (1973), 389–414 | MR | Zbl

[7] Tsuji M., Potential theory in modern function theory, Maruzen, Tokyo, 1959 | MR | Zbl

[8] Gonchar A. A., “O primerakh needinstvennosti analiticheskikh funktsii”, Vestn. MGU. Ser. Matem., mekhanika, 1 (1964), 37–43 | Zbl

[9] Gamelin T., Lectures on $H^{\infty}(D)$ (Notas de Matemática), Univ. Nacional de la Plata, Argentina, 1972

[10] Fisher S., “On Schwarz's lemma and inner functions”, TAMS, 138 (1969), 229–240 | DOI | MR | Zbl

[11] Behrens M., “The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains”, TAMS, 161 (1971), 359–380 | DOI | MR

[12] Samokhin M. V., “Nekotorye svoistva funktsii, yavlyayuschikhsya strogo krainimi tochkami edinichnogo shara algebry $H^{\infty}$”, Izv. AN Arm. SSR. Ser. matem., XI (1976), 503–513

[13] Gamelin T., “Localisation of corona problem”, Pacific J. Math., 34 (1970), 73–81 | MR | Zbl

[14] Hocupo K., Predelnye mnozhestva, IL, M., 1963

[15] Weiss M., “Claster sets of bounded analytic functions from a Banach algebraic viewpoint”, Ann. Acad. Sci. Fenn. Ser. AI., 367 (1965) | MR | Zbl

[16] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR