On unique solvability of the plane Neumann–Kelvin problem
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 425-446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Well-posed formulations of the plane Neumann–Kelvin problem are found. This linear boundary value problem describes the steady-state motion of a semisubmerged cylinder in an ideal, incompressible, heavy fluid. Theorems on unique solvability for arbitrary speed of the motion of the cylinder are proved for the formulations found. Figures: 1. Bibliography: 15 titles.
@article{SM_1989_63_2_a10,
     author = {N. G. Kuznetsov and V. G. Maz'ya},
     title = {On unique solvability of the plane {Neumann{\textendash}Kelvin} problem},
     journal = {Sbornik. Mathematics},
     pages = {425--446},
     year = {1989},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/}
}
TY  - JOUR
AU  - N. G. Kuznetsov
AU  - V. G. Maz'ya
TI  - On unique solvability of the plane Neumann–Kelvin problem
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 425
EP  - 446
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/
LA  - en
ID  - SM_1989_63_2_a10
ER  - 
%0 Journal Article
%A N. G. Kuznetsov
%A V. G. Maz'ya
%T On unique solvability of the plane Neumann–Kelvin problem
%J Sbornik. Mathematics
%D 1989
%P 425-446
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/
%G en
%F SM_1989_63_2_a10
N. G. Kuznetsov; V. G. Maz'ya. On unique solvability of the plane Neumann–Kelvin problem. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 425-446. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/

[1] Wehausen J. V., Laitone E. V., “Surface waves”, Encyclopedia of Physics, 9, Springer, Berlin, 1960, 446–778 | MR

[2] Wehausen J. V., “The wave resistance of ships”, Adv. Appl. Mech, 13 (1973), 93–245 | DOI

[3] Int. Sem. Wave Resistance, Soc. of Nav. Arch of Japan, Tokyo, 1976

[4] Brard R., “The representation of a given ship form by singularity distributions when the boundary condition on the free surface is linearized”, J. Ship Res., 16:1 (1972), 79–92

[5] Suzuki K., Numerical studies of the Neumann–Kelvin problem for a two-dimensional semisubmerged body, Proc. $3^\text{d}$ Int. Conf. Num. Ship Hydrodynamics, Paris, 1981

[6] Ursell F., “Mathematical notes on the two-dimensional Kelvin–Neumann problem”, Proc. $13^\text{th}$ Symp. Nav. Hydrodynamics, Shipbuild. Res. Ass. of Japan, Tokyo, 1981, 245–251

[7] Vainberg B. R., Mazya V. G., “K ploskoi zadache o dvizhenii pogruzhennogo v zhidkost tela”, Tr. MMO, 28 (1967), 35–56 | MR

[8] Kochin N. E., “O volnovom soprotivlenii i pod'emnoi sile pogruzhennykh v zhidkost tel”, Sobr. soch., 2, Izd. AN SSSR, M.-L., 1949, 105–182

[9] Simon M. J., Ursell F., “Uniqueness in linearized two-dimensional water-wave problems”, J. Fluid Mech., 148 (1984), 137–154 | DOI | MR | Zbl

[10] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16 (1967), 209–292

[11] John F., “On the motion of floating bodies. II”, Comm. Pure Appl. Math., 3:1 (1950), 45–101 | DOI | MR

[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[13] Carleman T., Über dae Neumann–Poincarésche Problem für ein Gebiet mit Ecken, Almqvist and Wiksells, Uppsala, 1916

[14] Gradshtein I. S, Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[15] Trofimov V. P., “O kornevykh podprostranstvakh operatorov, analiticheski zavisyaschikh ot parametra”, Matem. issled., 3:3 (1968), 117–125 | MR | Zbl