On unique solvability of the plane Neumann--Kelvin problem
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 425-446

Voir la notice de l'article provenant de la source Math-Net.Ru

Well-posed formulations of the plane Neumann–Kelvin problem are found. This linear boundary value problem describes the steady-state motion of a semisubmerged cylinder in an ideal, incompressible, heavy fluid. Theorems on unique solvability for arbitrary speed of the motion of the cylinder are proved for the formulations found. Figures: 1. Bibliography: 15 titles.
@article{SM_1989_63_2_a10,
     author = {N. G. Kuznetsov and V. G. Maz'ya},
     title = {On unique solvability of the plane {Neumann--Kelvin} problem},
     journal = {Sbornik. Mathematics},
     pages = {425--446},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/}
}
TY  - JOUR
AU  - N. G. Kuznetsov
AU  - V. G. Maz'ya
TI  - On unique solvability of the plane Neumann--Kelvin problem
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 425
EP  - 446
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/
LA  - en
ID  - SM_1989_63_2_a10
ER  - 
%0 Journal Article
%A N. G. Kuznetsov
%A V. G. Maz'ya
%T On unique solvability of the plane Neumann--Kelvin problem
%J Sbornik. Mathematics
%D 1989
%P 425-446
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/
%G en
%F SM_1989_63_2_a10
N. G. Kuznetsov; V. G. Maz'ya. On unique solvability of the plane Neumann--Kelvin problem. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 425-446. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/