On unique solvability of the plane Neumann--Kelvin problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 425-446
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Well-posed formulations of the plane Neumann–Kelvin problem are found. This linear boundary value problem describes the steady-state motion of a semisubmerged cylinder in an ideal, incompressible, heavy fluid. Theorems on unique solvability for arbitrary speed of the motion of the cylinder are proved for the formulations found.
Figures: 1.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1989_63_2_a10,
     author = {N. G. Kuznetsov and V. G. Maz'ya},
     title = {On unique solvability of the plane {Neumann--Kelvin} problem},
     journal = {Sbornik. Mathematics},
     pages = {425--446},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/}
}
                      
                      
                    N. G. Kuznetsov; V. G. Maz'ya. On unique solvability of the plane Neumann--Kelvin problem. Sbornik. Mathematics, Tome 63 (1989) no. 2, pp. 425-446. http://geodesic.mathdoc.fr/item/SM_1989_63_2_a10/
