Domains in $\mathbf C^2$ with noncompact holomorphic automorphism groops
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 141-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if a bounded domain $\Omega\subset\mathbf C^2$ with real analytic boundary has a noncompact automorphism group, then it is biholomorphically equivalent to a domain $$ E_m=\{z\in\mathbf C^2\colon|z_1|^{2m}+|z_2|^2<1\} $$ for some $m\in\mathbf N$. Bibliography: 17 titles.
@article{SM_1989_63_1_a9,
     author = {\`E. Bedford and S. I. Pinchuk},
     title = {Domains in $\mathbf C^2$ with noncompact holomorphic automorphism groops},
     journal = {Sbornik. Mathematics},
     pages = {141--151},
     year = {1989},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a9/}
}
TY  - JOUR
AU  - È. Bedford
AU  - S. I. Pinchuk
TI  - Domains in $\mathbf C^2$ with noncompact holomorphic automorphism groops
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 141
EP  - 151
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a9/
LA  - en
ID  - SM_1989_63_1_a9
ER  - 
%0 Journal Article
%A È. Bedford
%A S. I. Pinchuk
%T Domains in $\mathbf C^2$ with noncompact holomorphic automorphism groops
%J Sbornik. Mathematics
%D 1989
%P 141-151
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a9/
%G en
%F SM_1989_63_1_a9
È. Bedford; S. I. Pinchuk. Domains in $\mathbf C^2$ with noncompact holomorphic automorphism groops. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a9/

[1] Pinchuk S. I., “O golomorfnykh otobrazheniyakh veschestvenno-analiticheskikh giperpoverkhnostei”, Matem. sb., 105(147) (1978), 574–593 | MR | Zbl

[2] Pinchuk S. I., “O sobstvennykh golomorfnykh otobrazheniyakh strogo psevdovypuklykh oblastei”, Sib. matem. zhurn., 15:4 (1974), 909–917 | MR | Zbl

[3] Pyatetskii-Shapiro I. I., Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Fizmatgiz, M., 1961 | MR

[4] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbf{C}^n$, Mir, M., 1984 | MR | Zbl

[5] Khenkin G. M., “Analiticheskii poliedr golomorfno neekvivalenten strogo psevdovypukloi oblasti”, DAN SSSR, 210:5 (1973), 1026–1029 | Zbl

[6] Baouendi M. S., Jacobowitz H., Treves F., “On the analyticity of CR-mappings”, Ann. Math., 122 (1985), 365–400 | DOI | MR | Zbl

[7] Bedford E., “Action of the automorphisms of a smooth domains in $\mathbf{C}^n$”, Proc. Amer. Math. Soc., 93:2 (1985), 232–234 | DOI | MR | Zbl

[8] Bedford E., Dadok J., Bounded domains with prescribed groop of automorphisms, Preprint, Bloomington, 1986 | MR

[9] Bedford E., Fornaess J. E., “Biholomorphic maps of weakly pseudoconvex domains”, Duke Math. J., 45:4 (1978), 711–719 | DOI | MR | Zbl

[10] Bedford E., Fornaess J. E., “A construction of peak functions on weakly pseudoconvex domains”, Ann. Math., 107:2 (1978), 555–568 | DOI | MR | Zbl

[11] Bell S., Catlin D., “Boundary regularity of proper holomorphic mappings”, Duke Math. J., 49 (1982), 385–396 | DOI | MR | Zbl

[12] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46 (1978), 237–253 | DOI | MR | Zbl

[13] Cartan H., “Sur les groups des transformations analytique”, Actualités Sci. Ind., 198 (1935), 1–45

[14] Catlin D., “Invariant metrics on pseudoconvex domains”, Proc. 1981 Hangzhou Conf., Birkhauser Boston Inc., 1984, 7–12 | MR

[15] Diederich K., Fornaess J. E., “Proper holomorphic images of strictly pseudoconvex domains”, Math. Ann., 259 (1982), 279–286 | DOI | MR | Zbl

[16] Diederich K., Fornaess J. E., “Boundary regularity of proper holomorphic mappings”, Invent Math., 67 (1982), 363–384 | DOI | MR | Zbl

[17] Rosay J. P., “Sur une caracterisation de la boule”, Ann. Inst. Fourier, 29 (1979), 91–97 | MR | Zbl