On the integrability of Hamiltonian systems with toral position space
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 121-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the problem on the complete integrability of a Hamiltonian system with a toral position space, with Euclidean kinetic energy and a small analytic potential. Necessary integrability conditions are found in the case when the potential is a trigonometric polynomial. These conditions are also necessary conditions of existence of additional first integrals, polynomial in the momenta (with no assumption on the smallness of the potential). The proofs are based on a detailed analysis of the classical scheme of perturbation theory. The general results are applied to the study of the complete integrability of the well-known problem on the motion of $n$ points along a line with periodic interaction potential. In particular, the nonintegrability of the “open” chain of interactions of particles is proved for $n>2$; the “periodic” chain is nonintegrable with the additional condition that the potential be a nonconstant trigonometric polynomial. Conditions for complete integrability of the generalized nonperiodic Toda chain are discussed. Bibliography: 17 titles.
@article{SM_1989_63_1_a8,
     author = {V. V. Kozlov and D. V. Treshch\"ev},
     title = {On the integrability of {Hamiltonian} systems with toral position space},
     journal = {Sbornik. Mathematics},
     pages = {121--139},
     year = {1989},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a8/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treshchëv
TI  - On the integrability of Hamiltonian systems with toral position space
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 121
EP  - 139
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a8/
LA  - en
ID  - SM_1989_63_1_a8
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treshchëv
%T On the integrability of Hamiltonian systems with toral position space
%J Sbornik. Mathematics
%D 1989
%P 121-139
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a8/
%G en
%F SM_1989_63_1_a8
V. V. Kozlov; D. V. Treshchëv. On the integrability of Hamiltonian systems with toral position space. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a8/

[1] Puankare A., “Novye metody nebesnoi mekhaniki”, Izbrannye trudy, t. I, Nauka, M., 1971

[2] Puankare A., “O zadache trekh tel i ob uravneniyakh dinamiki”, Izbrannye trudy, t. II, Nauka, M., 1972

[3] Kozlov V. V., “O nesuschestvovanii analiticheskikh integralov kanonicheskikh sistem, blizkikh k integriruemym”, Vestn. MGU. Ser. 1. Matem. i mekh., 1974, no. 2, 77–82 | MR | Zbl

[4] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[5] Born M., Lektsii po atomnoi mekhanike, Nauch.-tekhn. izd. Ukrainy, Kharkov–Kiev, 1934

[6] Stepin A. M., “Integriruemye gamiltonovy sistemy”, Kachestvennye metody issledovaniya nelineinykh differentsialnykh uravnenii i nelineinykh kolebanii, In-t matematiki AN USSR, Kiev, 1981, 116–143 | MR

[7] Uitteker E. T., Analiticheskaya dinamika, ONTI, M., L., 1937

[8] Birkgof Dzh., Dinamicheskie sistemy, Gostekhizdat, M., L., 1941

[9] Adler M., van Moerbeke P., “Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras and Regularization”, Commun. Math. Phys., 83 (1982), 83–106 | DOI | MR | Zbl

[10] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[11] Calogero F., “Exactly solvable one-dimentional many body problems”, Letters al Nuovo Cimento, 13:11 (1975), 411–416 | DOI | MR

[12] Pidkuiko S. I., Stepin A. M., “Polinomialnye integraly gamiltonovykh sistem”, DAN SSSR, 239:1 (1978), 50–51 | MR

[13] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, t. 1, Fizmatgiz, M., 1963 | Zbl

[14] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[15] Bogoyavlenskii O. I., Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl

[16] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li. Tsepochka Tody, Preprint No 111, ITEF, M., 1983

[17] Treschëv D. V., “O suschestvovanii beskonechnogo kolichestva nevyrozhdennykh periodicheskikh reshenii gamiltonovoi sistemy, blizkoi k integriruemoi”, Geometriya, differentsialnye uravneniya i mekhanika, Izd-vo MGU, M., 1986, 121–127