Strongly damped pencils of operators and solvability of the corresponding operator-differential equations
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 97-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An investigation is made of the operator pencil $L(\lambda)=A+\lambda B+\lambda^2C$ under the assumption that the selfadjoint operators $A$, $B$, and $C$ satisfy the strong damping condition $(Bx,x)^2>4(Ax,x)(Cx,x)$. Such operator pencils have been studied thoroughly in the literature under the condition that their spectral zones are separated. The present article is a study of the spectral properties of the linear factors into which the pencil splits when the spectral zones adjoin. The results carry over to the case of pencils of unbounded operators and are used to prove the existence and uniqueness of solutions of equations of the form $Fu''+iGu'+Hu=0$ or $-Fu''+Gu'+Hu=0$ on the semi-axis $(0,\infty)$, where $H\gg0$ and $F\geqslant0$ are selfadjoint operators whose domains satisfy the inclusion $D(F)\supseteq D(H)$, and $G$ is a symmetric operator such that $D(G)\supseteq D(H)$, and $(Gy,y)\ne0$ for $y\in\operatorname{Ker}F\cap D(H^{1/2})$, $y\ne0$. Bibliography: 35 titles.
@article{SM_1989_63_1_a7,
     author = {A. A. Shkalikov},
     title = {Strongly damped pencils of operators and solvability of the corresponding operator-differential equations},
     journal = {Sbornik. Mathematics},
     pages = {97--119},
     year = {1989},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a7/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - Strongly damped pencils of operators and solvability of the corresponding operator-differential equations
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 97
EP  - 119
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a7/
LA  - en
ID  - SM_1989_63_1_a7
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T Strongly damped pencils of operators and solvability of the corresponding operator-differential equations
%J Sbornik. Mathematics
%D 1989
%P 97-119
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a7/
%G en
%F SM_1989_63_1_a7
A. A. Shkalikov. Strongly damped pencils of operators and solvability of the corresponding operator-differential equations. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 97-119. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a7/

[1] Duffin R. J., “A minimax theory for overdamped networks”, J. Rath. Mech. Anal., 4 (1955), 221–223 | MR

[2] Krein M. G., Langer G. K., “O nekotorykh matematicheskikh printsipakh teorii dempfirovannykh kolebanii kontinuumov”, Trudy mezhdunarodnogo simpoziuma po primeneniyu teorii funktsii kompleksnogo peremennogo v mekhanike sploshnoi sredy, Nauka, M., 1965, 283–322 | MR

[3] Langer G. K., “Ob invariantnykh podprostranstvakh lineinykh operatorov, deistvuyuschikh v prostranstve s indefinitnoi metrikoi”, DAN SSSR, 169:1 (1966), 12–15 | Zbl

[4] Langer H., “Uber stark gedampfte Scharen im Hilbetraum”, J. Math. and Mech., 17 (1968), 685–706 | MR

[5] Langer H., “Uber eine Klasse nichtlinearer Eigenwertprobleme”, Acta Scient. Math. Szeged., 33 (1973), 73–86 | MR

[6] Langer H., “Factorization of operator pensils”, Acta Scient. Math. Szeged., 38 (1976), 83–96 | MR | Zbl

[7] Markus A. S, Matsaev V. I., Russu G. I., “O nekotorykh obobscheniyakh teorii silno dempfirovannykh puchkov na sluchai puchkov proizvolnogo poryadka”, Acta Scient. Math. Szeged., 34 (1973), 245–271 | MR | Zbl

[8] Orazov M. B., Radzievskii G. V., “Teoremy polnoty i bazisnosti sobstvennykh vektorov giperbolicheskoi operator-funktsii”, Sib. matem. zhurn., 16:3 (1975), 572–587 | MR | Zbl

[9] Markus A. S., Matsaev V. I., “O faktorizatsii slabo giperbolicheskogo puchka”, Funktsion. analiz i ego pril., 10:1 (1976), 81–82 | MR | Zbl

[10] Abramov Yu. Sh., Variatsionnye metody v teorii operatornykh puchkov. Spektralnaya optimizatsiya, Izd-vo LGU, L., 1983 | MR | Zbl

[11] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[12] Kostyuchenko A. G., Shkalikov A. A., “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funktsion. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl

[13] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[14] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[15] Levinson N., Gap and density theorems, Acad. Press, New York, 1940 | MR

[16] Shkalikov A. A., “O svoistvakh chasti sobstvennykh i prisoedinennykh elementov samosopryazhennykh kvadratichnykh puchkov operatorov”, DAN SSSR, 283:5 (1985), 1100–1106 | MR | Zbl

[17] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[18] Shkalikov A. A., “O bazisnosti sobstvennykh vektorov kvadratichnykh operatornykh puchkov”, Matem. zametki., 30:3 (1981), 371–385 | MR | Zbl

[19] Shkalikov A. A., “Slabo vozmuschennye puchki operatorov”, Tez. dokl. resp. simpoz. po differentsialnym uravneniyam, Izd-vo Ashkhabadsk. un-ta, Ashkhabad, 1978, 132–133

[20] Shkalikov A. A., “Operatorno-differentsialnye uravneniya na poluosi i svyazannye s nimi spektralnye zadachi dlya samosopryazhennykh puchkov operatorov”, DAN SSSR, 276:2 (1984), 309–314 | MR | Zbl

[21] Radzievskii G. V., “Ob odnom sposobe dokazatelstva minimalnosti i bazisnosti chasti kornevykh vektorov”, Funktsion. analiz i ego pril., 17:1 (1983), 24–30 | MR | Zbl

[22] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[23] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[24] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Nauka, M., 1980 | MR

[25] Ladyzhenskaya O. A., Stupyalis L. I., “Kraevye zadachi dlya uravneniya smeshannogo tipa”, Tr. MIAN, 116 (1971), 101–136 | Zbl

[26] Grisvard P., “Caracterisation de quelques espaces d'interpolation”, Arch. Rath. Mech. Anal., 25 (1967), 40–63 | DOI | MR | Zbl

[27] Seeley R., “Interpolation in $L_p$ with boundary condition”, Studia Math., 44 (1972), 47–60 | MR | Zbl

[28] Levin B. Ya., Tselye funktsii (kurs lektsii), Izd-vo MGU, M., 1971

[29] Shkalikov A. A., “Ob odnoi sisteme funktsii”, Matem. zametki, 18:6 (1975), 855–860 | MR | Zbl

[30] Lyubarskii Yu. I., Tkachenko V. A., “O sisteme $\{e^{\alpha nx}\sin nx\}_1{}^{\infty}$”, Funktsion. analiz i ego pril., 18:2 (1984), 69–70 | MR | Zbl

[31] Ponomarev S. M., “Ob odnoi zadache na sobstvennye znacheniya”, DAN SSSR, 249:5 (1979), 1068–1070 | MR | Zbl

[32] Moiseev E. I., “O bazisnosti sistem sinusov i kosinusov”, DAN SSSR, 275:4 (1984), 794–798 | MR | Zbl

[33] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. seminara im. I. G. Petrovskogo, 9, Izd-vo MGU, M., 1983, 190–229 | MR

[34] Ingam A. E., “A note on Hilbert's inequality”, J. London Math. Soc., 11 (1936), 237–240 | DOI

[35] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948