@article{SM_1989_63_1_a6,
author = {S. L. Bezrukov},
title = {On the construction of solutions of a~discrete isoperimetric problem in {Hamming} space},
journal = {Sbornik. Mathematics},
pages = {81--96},
year = {1989},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a6/}
}
S. L. Bezrukov. On the construction of solutions of a discrete isoperimetric problem in Hamming space. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a6/
[1] Aslanyan L. A., “Izoperimetricheskaya zadacha i smezhnye ekstremalnye zadachi dlya diskretnykh prostranstv”, Problemy kibernetiki, 36, Nauka, M., 1979, 85–127 | MR
[2] Aslanyan L. A., Karakhanyan V. M., Torosyan B. E., “Reshenie diskretnoi izoperimetricheskoi zadachi”, DAN ArmSSR, LXV:5 (1977), 257–262
[3] Aslanyan L. A., Karakhanyan V. M., “Obschee opisanie reshenii diskretnoi izoperimetricheskoi zadachi”, DAN ArmSSR, LXV:4 (1977), 211–215
[4] Bezrukov S. L., “Opisanie vsekh reshenii diskretnoi izoperimetricheskoi zadachi, imeyuschikh kriticheskuyu moschnost”, DAN SSSR, 279:3 (1984), 521–524 | MR
[5] Bezrukov S. L., “Ob odnoi kombinatornoi gipoteze Erdesha”, Tez. VII Vsesoyuznoi konf. Problemy teoreticheskoi kibernetiki, 1, VTs SO AN SSSR, Irkutsk, 1985, 72–73
[6] Harper L. H., “Optimal numberings and isoperimetric problems on graphs”, J. Comb. Theory, 1:3 (1966), 385–393 | DOI | MR | Zbl
[7] Katona G. O. H., “The Hamming-sphere has minimum boundary”, Studia Scient. Math. Hungarica, 10 (1975), 131–140 | MR