On polynomials of prescribed height in finite fields
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 247-255

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the set $\mathfrak M(B)$ of monic polynomials of degree $n$ with integral coefficients belonging to a given $n$-dimensional cube $B$ with side $h$. An asymptotic formula is obtained for the number of polynomials in $\mathfrak M(B)$ having a specific type of decomposition into irreducible factors modulo some prime $p$, and an asymptotic formula for the number of primitive polynomials modulo $p$ in $\mathfrak M(B)$, which translates when $n=1$ into known results of I. M. Vinogradov on the distribution of primitive roots. These asymptotic formulas are nontrivial when $h\geqslant p^{n/(n+1)+\varepsilon}$ for any $\varepsilon>0$. Moreover, an asymptotic formula is obtained for the average value of the number of divisors modulo $p$ of polynomials in $\mathfrak M(B)$, a result that is nontrivial when $h\geqslant\max(p^{1-2/n}\ln p,p^{1/2}\ln p)$. Bibliography: 11 titles.
@article{SM_1989_63_1_a16,
     author = {I. E. Shparlinski},
     title = {On polynomials of prescribed height in finite fields},
     journal = {Sbornik. Mathematics},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a16/}
}
TY  - JOUR
AU  - I. E. Shparlinski
TI  - On polynomials of prescribed height in finite fields
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 247
EP  - 255
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a16/
LA  - en
ID  - SM_1989_63_1_a16
ER  - 
%0 Journal Article
%A I. E. Shparlinski
%T On polynomials of prescribed height in finite fields
%J Sbornik. Mathematics
%D 1989
%P 247-255
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a16/
%G en
%F SM_1989_63_1_a16
I. E. Shparlinski. On polynomials of prescribed height in finite fields. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 247-255. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a16/