On approximation of functions by singular integrals in the Hausdorff metric
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 229-246
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Necessary and sufficient conditions are found for convergence in the Hausdorff metric of a sequence of integral operators on an arbitrary bounded measurable function. The criterion obtained is used to investigate summation of trigonometric Fourier series by the Abel–Poisson, Vallée-Poussin, Bernstein–Rogosinski, and Cesàro methods.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1989_63_1_a15,
     author = {A. P. Petukhov},
     title = {On approximation of functions by singular integrals in the {Hausdorff} metric},
     journal = {Sbornik. Mathematics},
     pages = {229--246},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a15/}
}
                      
                      
                    A. P. Petukhov. On approximation of functions by singular integrals in the Hausdorff metric. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 229-246. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a15/
