On approximation of functions by singular integrals in the Hausdorff metric
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 229-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions are found for convergence in the Hausdorff metric of a sequence of integral operators on an arbitrary bounded measurable function. The criterion obtained is used to investigate summation of trigonometric Fourier series by the Abel–Poisson, Vallée-Poussin, Bernstein–Rogosinski, and Cesàro methods. Bibliography: 7 titles.
@article{SM_1989_63_1_a15,
     author = {A. P. Petukhov},
     title = {On approximation of functions by singular integrals in the {Hausdorff} metric},
     journal = {Sbornik. Mathematics},
     pages = {229--246},
     year = {1989},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a15/}
}
TY  - JOUR
AU  - A. P. Petukhov
TI  - On approximation of functions by singular integrals in the Hausdorff metric
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 229
EP  - 246
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a15/
LA  - en
ID  - SM_1989_63_1_a15
ER  - 
%0 Journal Article
%A A. P. Petukhov
%T On approximation of functions by singular integrals in the Hausdorff metric
%J Sbornik. Mathematics
%D 1989
%P 229-246
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a15/
%G en
%F SM_1989_63_1_a15
A. P. Petukhov. On approximation of functions by singular integrals in the Hausdorff metric. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 229-246. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a15/

[1] Sendov Bl., Khausdorfnye priblizheniya, Bolg. AN, Sofiya, 1979 | Zbl

[2] Lebesgue H., “Sur les integrates singulieres”, Ann. Toulouse, 1 (1909), 25–117 | MR

[3] Fikhtengolts G. M., Teoriya prostykh opredelennykh integralov, zavisyaschikh ot parametra, Petrograd, 1918

[4] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[5] Natanson G. I., “Yavlenie Gibbsa dlya summ Valle-Pussena”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, GIFML, M., 1961, 206–213 | MR

[6] Kharshiladze F. I., “Yavlenie Gibbsa pri summirovanii ryada Fure metodami Bernshteina–Rogozinskogo”, DAN SSSR, 101:3 (1955), 425–428

[7] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR